Metamath Proof Explorer


Theorem hgmapcl

Description: Closure of scalar sigma map i.e. the map from the vector space scalar base to the dual space scalar base. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hgmapcl.h H = LHyp K
hgmapcl.u U = DVecH K W
hgmapcl.r R = Scalar U
hgmapcl.b B = Base R
hgmapcl.g G = HGMap K W
hgmapcl.k φ K HL W H
hgmapcl.f φ F B
Assertion hgmapcl φ G F B

Proof

Step Hyp Ref Expression
1 hgmapcl.h H = LHyp K
2 hgmapcl.u U = DVecH K W
3 hgmapcl.r R = Scalar U
4 hgmapcl.b B = Base R
5 hgmapcl.g G = HGMap K W
6 hgmapcl.k φ K HL W H
7 hgmapcl.f φ F B
8 eqid Base U = Base U
9 eqid U = U
10 eqid LCDual K W = LCDual K W
11 eqid LCDual K W = LCDual K W
12 eqid HDMap K W = HDMap K W
13 1 2 8 9 3 4 10 11 12 5 6 7 hgmapval φ G F = ι g B | x Base U HDMap K W F U x = g LCDual K W HDMap K W x
14 1 2 8 9 3 4 10 11 12 6 7 hdmap14lem15 φ ∃! g B x Base U HDMap K W F U x = g LCDual K W HDMap K W x
15 riotacl ∃! g B x Base U HDMap K W F U x = g LCDual K W HDMap K W x ι g B | x Base U HDMap K W F U x = g LCDual K W HDMap K W x B
16 14 15 syl φ ι g B | x Base U HDMap K W F U x = g LCDual K W HDMap K W x B
17 13 16 eqeltrd φ G F B