Metamath Proof Explorer


Theorem hgmapdcl

Description: Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hgmapdcl.h H = LHyp K
hgmapdcl.u U = DVecH K W
hgmapdcl.r R = Scalar U
hgmapdcl.b B = Base R
hgmapdcl.c C = LCDual K W
hgmapdcl.q Q = Scalar C
hgmapdcl.a A = Base Q
hgmapdcl.g G = HGMap K W
hgmapdcl.k φ K HL W H
hgmapdcl.f φ F B
Assertion hgmapdcl φ G F A

Proof

Step Hyp Ref Expression
1 hgmapdcl.h H = LHyp K
2 hgmapdcl.u U = DVecH K W
3 hgmapdcl.r R = Scalar U
4 hgmapdcl.b B = Base R
5 hgmapdcl.c C = LCDual K W
6 hgmapdcl.q Q = Scalar C
7 hgmapdcl.a A = Base Q
8 hgmapdcl.g G = HGMap K W
9 hgmapdcl.k φ K HL W H
10 hgmapdcl.f φ F B
11 1 2 3 4 8 9 10 hgmapcl φ G F B
12 1 2 3 4 5 6 7 9 lcdsbase φ A = B
13 11 12 eleqtrrd φ G F A