Metamath Proof Explorer


Theorem hgmapdcl

Description: Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hgmapdcl.h H=LHypK
hgmapdcl.u U=DVecHKW
hgmapdcl.r R=ScalarU
hgmapdcl.b B=BaseR
hgmapdcl.c C=LCDualKW
hgmapdcl.q Q=ScalarC
hgmapdcl.a A=BaseQ
hgmapdcl.g G=HGMapKW
hgmapdcl.k φKHLWH
hgmapdcl.f φFB
Assertion hgmapdcl φGFA

Proof

Step Hyp Ref Expression
1 hgmapdcl.h H=LHypK
2 hgmapdcl.u U=DVecHKW
3 hgmapdcl.r R=ScalarU
4 hgmapdcl.b B=BaseR
5 hgmapdcl.c C=LCDualKW
6 hgmapdcl.q Q=ScalarC
7 hgmapdcl.a A=BaseQ
8 hgmapdcl.g G=HGMapKW
9 hgmapdcl.k φKHLWH
10 hgmapdcl.f φFB
11 1 2 3 4 8 9 10 hgmapcl φGFB
12 1 2 3 4 5 6 7 9 lcdsbase φA=B
13 11 12 eleqtrrd φGFA