Description: Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hgmapdcl.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
hgmapdcl.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | ||
hgmapdcl.r | ⊢ 𝑅 = ( Scalar ‘ 𝑈 ) | ||
hgmapdcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
hgmapdcl.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | ||
hgmapdcl.q | ⊢ 𝑄 = ( Scalar ‘ 𝐶 ) | ||
hgmapdcl.a | ⊢ 𝐴 = ( Base ‘ 𝑄 ) | ||
hgmapdcl.g | ⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | ||
hgmapdcl.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | ||
hgmapdcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
Assertion | hgmapdcl | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐹 ) ∈ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmapdcl.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
2 | hgmapdcl.u | ⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | |
3 | hgmapdcl.r | ⊢ 𝑅 = ( Scalar ‘ 𝑈 ) | |
4 | hgmapdcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
5 | hgmapdcl.c | ⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | |
6 | hgmapdcl.q | ⊢ 𝑄 = ( Scalar ‘ 𝐶 ) | |
7 | hgmapdcl.a | ⊢ 𝐴 = ( Base ‘ 𝑄 ) | |
8 | hgmapdcl.g | ⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | |
9 | hgmapdcl.k | ⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) | |
10 | hgmapdcl.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
11 | 1 2 3 4 8 9 10 | hgmapcl | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐹 ) ∈ 𝐵 ) |
12 | 1 2 3 4 5 6 7 9 | lcdsbase | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
13 | 11 12 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐺 ‘ 𝐹 ) ∈ 𝐴 ) |