Metamath Proof Explorer


Theorem hgmapdcl

Description: Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hgmapdcl.h 𝐻 = ( LHyp ‘ 𝐾 )
hgmapdcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hgmapdcl.r 𝑅 = ( Scalar ‘ 𝑈 )
hgmapdcl.b 𝐵 = ( Base ‘ 𝑅 )
hgmapdcl.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hgmapdcl.q 𝑄 = ( Scalar ‘ 𝐶 )
hgmapdcl.a 𝐴 = ( Base ‘ 𝑄 )
hgmapdcl.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
hgmapdcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hgmapdcl.f ( 𝜑𝐹𝐵 )
Assertion hgmapdcl ( 𝜑 → ( 𝐺𝐹 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 hgmapdcl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hgmapdcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hgmapdcl.r 𝑅 = ( Scalar ‘ 𝑈 )
4 hgmapdcl.b 𝐵 = ( Base ‘ 𝑅 )
5 hgmapdcl.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
6 hgmapdcl.q 𝑄 = ( Scalar ‘ 𝐶 )
7 hgmapdcl.a 𝐴 = ( Base ‘ 𝑄 )
8 hgmapdcl.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
9 hgmapdcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 hgmapdcl.f ( 𝜑𝐹𝐵 )
11 1 2 3 4 8 9 10 hgmapcl ( 𝜑 → ( 𝐺𝐹 ) ∈ 𝐵 )
12 1 2 3 4 5 6 7 9 lcdsbase ( 𝜑𝐴 = 𝐵 )
13 11 12 eleqtrrd ( 𝜑 → ( 𝐺𝐹 ) ∈ 𝐴 )