Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapvs.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hgmapvs.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hgmapvs.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hgmapvs.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hgmapvs.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hgmapvs.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
hgmapvs.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hgmapvs.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
9 |
|
hgmapvs.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hgmapvs.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hgmapvs.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hgmapvs.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
13 |
|
hgmapvs.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 13
|
hgmapval |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐹 ) = ( ℩ 𝑔 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) ) |
15 |
14
|
eqcomd |
⊢ ( 𝜑 → ( ℩ 𝑔 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) = ( 𝐺 ‘ 𝐹 ) ) |
16 |
1 2 5 6 10 11 13
|
hgmapcl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐹 ) ∈ 𝐵 ) |
17 |
1 2 3 4 5 6 7 8 9 11 13
|
hdmap14lem15 |
⊢ ( 𝜑 → ∃! 𝑔 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝐹 ) → ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑥 ) ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝐹 ) → ( ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ↔ ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑥 ) ) ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝑔 = ( 𝐺 ‘ 𝐹 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑥 ) ) ) ) |
21 |
20
|
riota2 |
⊢ ( ( ( 𝐺 ‘ 𝐹 ) ∈ 𝐵 ∧ ∃! 𝑔 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑥 ) ) ↔ ( ℩ 𝑔 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) = ( 𝐺 ‘ 𝐹 ) ) ) |
22 |
16 17 21
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑥 ) ) ↔ ( ℩ 𝑔 ∈ 𝐵 ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ∙ ( 𝑆 ‘ 𝑥 ) ) ) = ( 𝐺 ‘ 𝐹 ) ) ) |
23 |
15 22
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑥 ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 · 𝑥 ) = ( 𝐹 · 𝑋 ) ) |
25 |
24
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) ) |
26 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑋 ) ) |
27 |
26
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑥 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
28 |
25 27
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑥 ) ) ↔ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑋 ) ) ) ) |
29 |
28
|
rspcva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑥 ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑋 ) ) ) |
30 |
12 23 29
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( ( 𝐺 ‘ 𝐹 ) ∙ ( 𝑆 ‘ 𝑋 ) ) ) |