| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapvs.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmapvs.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmapvs.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hgmapvs.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hgmapvs.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hgmapvs.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | hgmapvs.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hgmapvs.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 9 |  | hgmapvs.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hgmapvs.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hgmapvs.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | hgmapvs.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 13 |  | hgmapvs.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 13 | hgmapval | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐹 )  =  ( ℩ 𝑔  ∈  𝐵 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) ) ) | 
						
							| 15 | 14 | eqcomd | ⊢ ( 𝜑  →  ( ℩ 𝑔  ∈  𝐵 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) )  =  ( 𝐺 ‘ 𝐹 ) ) | 
						
							| 16 | 1 2 5 6 10 11 13 | hgmapcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐹 )  ∈  𝐵 ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 11 13 | hdmap14lem15 | ⊢ ( 𝜑  →  ∃! 𝑔  ∈  𝐵 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑔  =  ( 𝐺 ‘ 𝐹 )  →  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑔  =  ( 𝐺 ‘ 𝐹 )  →  ( ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) )  ↔  ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑥 ) ) ) ) | 
						
							| 20 | 19 | ralbidv | ⊢ ( 𝑔  =  ( 𝐺 ‘ 𝐹 )  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑥 ) ) ) ) | 
						
							| 21 | 20 | riota2 | ⊢ ( ( ( 𝐺 ‘ 𝐹 )  ∈  𝐵  ∧  ∃! 𝑔  ∈  𝐵 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) )  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑥 ) )  ↔  ( ℩ 𝑔  ∈  𝐵 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) )  =  ( 𝐺 ‘ 𝐹 ) ) ) | 
						
							| 22 | 16 17 21 | syl2anc | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑥 ) )  ↔  ( ℩ 𝑔  ∈  𝐵 ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑔  ∙  ( 𝑆 ‘ 𝑥 ) ) )  =  ( 𝐺 ‘ 𝐹 ) ) ) | 
						
							| 23 | 15 22 | mpbird | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑥 ) ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐹  ·  𝑥 )  =  ( 𝐹  ·  𝑋 ) ) | 
						
							| 25 | 24 | fveq2d | ⊢ ( 𝑥  =  𝑋  →  ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑆 ‘ 𝑥 )  =  ( 𝑆 ‘ 𝑋 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑥 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 28 | 25 27 | eqeq12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑥 ) )  ↔  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 29 | 28 | rspcva | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∀ 𝑥  ∈  𝑉 ( 𝑆 ‘ ( 𝐹  ·  𝑥 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑥 ) ) )  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 30 | 12 23 29 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐹  ·  𝑋 ) )  =  ( ( 𝐺 ‘ 𝐹 )  ∙  ( 𝑆 ‘ 𝑋 ) ) ) |