Metamath Proof Explorer


Theorem hgmapvs

Description: Part 15 of Baer p. 50 line 6. Also line 15 in Holland95 p. 14. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hgmapvs.h 𝐻 = ( LHyp ‘ 𝐾 )
hgmapvs.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hgmapvs.v 𝑉 = ( Base ‘ 𝑈 )
hgmapvs.t · = ( ·𝑠𝑈 )
hgmapvs.r 𝑅 = ( Scalar ‘ 𝑈 )
hgmapvs.b 𝐵 = ( Base ‘ 𝑅 )
hgmapvs.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
hgmapvs.e = ( ·𝑠𝐶 )
hgmapvs.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hgmapvs.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
hgmapvs.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hgmapvs.x ( 𝜑𝑋𝑉 )
hgmapvs.f ( 𝜑𝐹𝐵 )
Assertion hgmapvs ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 hgmapvs.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hgmapvs.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hgmapvs.v 𝑉 = ( Base ‘ 𝑈 )
4 hgmapvs.t · = ( ·𝑠𝑈 )
5 hgmapvs.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hgmapvs.b 𝐵 = ( Base ‘ 𝑅 )
7 hgmapvs.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
8 hgmapvs.e = ( ·𝑠𝐶 )
9 hgmapvs.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
10 hgmapvs.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
11 hgmapvs.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 hgmapvs.x ( 𝜑𝑋𝑉 )
13 hgmapvs.f ( 𝜑𝐹𝐵 )
14 1 2 3 4 5 6 7 8 9 10 11 13 hgmapval ( 𝜑 → ( 𝐺𝐹 ) = ( 𝑔𝐵𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ) )
15 14 eqcomd ( 𝜑 → ( 𝑔𝐵𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ) = ( 𝐺𝐹 ) )
16 1 2 5 6 10 11 13 hgmapcl ( 𝜑 → ( 𝐺𝐹 ) ∈ 𝐵 )
17 1 2 3 4 5 6 7 8 9 11 13 hdmap14lem15 ( 𝜑 → ∃! 𝑔𝐵𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) )
18 oveq1 ( 𝑔 = ( 𝐺𝐹 ) → ( 𝑔 ( 𝑆𝑥 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑥 ) ) )
19 18 eqeq2d ( 𝑔 = ( 𝐺𝐹 ) → ( ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ↔ ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑥 ) ) ) )
20 19 ralbidv ( 𝑔 = ( 𝐺𝐹 ) → ( ∀ 𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ↔ ∀ 𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑥 ) ) ) )
21 20 riota2 ( ( ( 𝐺𝐹 ) ∈ 𝐵 ∧ ∃! 𝑔𝐵𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ) → ( ∀ 𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑥 ) ) ↔ ( 𝑔𝐵𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ) = ( 𝐺𝐹 ) ) )
22 16 17 21 syl2anc ( 𝜑 → ( ∀ 𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑥 ) ) ↔ ( 𝑔𝐵𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑔 ( 𝑆𝑥 ) ) ) = ( 𝐺𝐹 ) ) )
23 15 22 mpbird ( 𝜑 → ∀ 𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑥 ) ) )
24 oveq2 ( 𝑥 = 𝑋 → ( 𝐹 · 𝑥 ) = ( 𝐹 · 𝑋 ) )
25 24 fveq2d ( 𝑥 = 𝑋 → ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) )
26 fveq2 ( 𝑥 = 𝑋 → ( 𝑆𝑥 ) = ( 𝑆𝑋 ) )
27 26 oveq2d ( 𝑥 = 𝑋 → ( ( 𝐺𝐹 ) ( 𝑆𝑥 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑋 ) ) )
28 25 27 eqeq12d ( 𝑥 = 𝑋 → ( ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑥 ) ) ↔ ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑋 ) ) ) )
29 28 rspcva ( ( 𝑋𝑉 ∧ ∀ 𝑥𝑉 ( 𝑆 ‘ ( 𝐹 · 𝑥 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑥 ) ) ) → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑋 ) ) )
30 12 23 29 syl2anc ( 𝜑 → ( 𝑆 ‘ ( 𝐹 · 𝑋 ) ) = ( ( 𝐺𝐹 ) ( 𝑆𝑋 ) ) )