Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapvs.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmapvs.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmapvs.v |
|- V = ( Base ` U ) |
4 |
|
hgmapvs.t |
|- .x. = ( .s ` U ) |
5 |
|
hgmapvs.r |
|- R = ( Scalar ` U ) |
6 |
|
hgmapvs.b |
|- B = ( Base ` R ) |
7 |
|
hgmapvs.c |
|- C = ( ( LCDual ` K ) ` W ) |
8 |
|
hgmapvs.e |
|- .xb = ( .s ` C ) |
9 |
|
hgmapvs.s |
|- S = ( ( HDMap ` K ) ` W ) |
10 |
|
hgmapvs.g |
|- G = ( ( HGMap ` K ) ` W ) |
11 |
|
hgmapvs.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
12 |
|
hgmapvs.x |
|- ( ph -> X e. V ) |
13 |
|
hgmapvs.f |
|- ( ph -> F e. B ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 13
|
hgmapval |
|- ( ph -> ( G ` F ) = ( iota_ g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) ) |
15 |
14
|
eqcomd |
|- ( ph -> ( iota_ g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) = ( G ` F ) ) |
16 |
1 2 5 6 10 11 13
|
hgmapcl |
|- ( ph -> ( G ` F ) e. B ) |
17 |
1 2 3 4 5 6 7 8 9 11 13
|
hdmap14lem15 |
|- ( ph -> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) |
18 |
|
oveq1 |
|- ( g = ( G ` F ) -> ( g .xb ( S ` x ) ) = ( ( G ` F ) .xb ( S ` x ) ) ) |
19 |
18
|
eqeq2d |
|- ( g = ( G ` F ) -> ( ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) <-> ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) ) ) |
20 |
19
|
ralbidv |
|- ( g = ( G ` F ) -> ( A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) <-> A. x e. V ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) ) ) |
21 |
20
|
riota2 |
|- ( ( ( G ` F ) e. B /\ E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) -> ( A. x e. V ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) <-> ( iota_ g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) = ( G ` F ) ) ) |
22 |
16 17 21
|
syl2anc |
|- ( ph -> ( A. x e. V ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) <-> ( iota_ g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) = ( G ` F ) ) ) |
23 |
15 22
|
mpbird |
|- ( ph -> A. x e. V ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) ) |
24 |
|
oveq2 |
|- ( x = X -> ( F .x. x ) = ( F .x. X ) ) |
25 |
24
|
fveq2d |
|- ( x = X -> ( S ` ( F .x. x ) ) = ( S ` ( F .x. X ) ) ) |
26 |
|
fveq2 |
|- ( x = X -> ( S ` x ) = ( S ` X ) ) |
27 |
26
|
oveq2d |
|- ( x = X -> ( ( G ` F ) .xb ( S ` x ) ) = ( ( G ` F ) .xb ( S ` X ) ) ) |
28 |
25 27
|
eqeq12d |
|- ( x = X -> ( ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) <-> ( S ` ( F .x. X ) ) = ( ( G ` F ) .xb ( S ` X ) ) ) ) |
29 |
28
|
rspcva |
|- ( ( X e. V /\ A. x e. V ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) ) -> ( S ` ( F .x. X ) ) = ( ( G ` F ) .xb ( S ` X ) ) ) |
30 |
12 23 29
|
syl2anc |
|- ( ph -> ( S ` ( F .x. X ) ) = ( ( G ` F ) .xb ( S ` X ) ) ) |