| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapvs.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmapvs.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmapvs.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hgmapvs.t |  |-  .x. = ( .s ` U ) | 
						
							| 5 |  | hgmapvs.r |  |-  R = ( Scalar ` U ) | 
						
							| 6 |  | hgmapvs.b |  |-  B = ( Base ` R ) | 
						
							| 7 |  | hgmapvs.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 8 |  | hgmapvs.e |  |-  .xb = ( .s ` C ) | 
						
							| 9 |  | hgmapvs.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 10 |  | hgmapvs.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 11 |  | hgmapvs.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 |  | hgmapvs.x |  |-  ( ph -> X e. V ) | 
						
							| 13 |  | hgmapvs.f |  |-  ( ph -> F e. B ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 13 | hgmapval |  |-  ( ph -> ( G ` F ) = ( iota_ g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) ) | 
						
							| 15 | 14 | eqcomd |  |-  ( ph -> ( iota_ g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) = ( G ` F ) ) | 
						
							| 16 | 1 2 5 6 10 11 13 | hgmapcl |  |-  ( ph -> ( G ` F ) e. B ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 11 13 | hdmap14lem15 |  |-  ( ph -> E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) | 
						
							| 18 |  | oveq1 |  |-  ( g = ( G ` F ) -> ( g .xb ( S ` x ) ) = ( ( G ` F ) .xb ( S ` x ) ) ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( g = ( G ` F ) -> ( ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) <-> ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) ) ) | 
						
							| 20 | 19 | ralbidv |  |-  ( g = ( G ` F ) -> ( A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) <-> A. x e. V ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) ) ) | 
						
							| 21 | 20 | riota2 |  |-  ( ( ( G ` F ) e. B /\ E! g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) -> ( A. x e. V ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) <-> ( iota_ g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) = ( G ` F ) ) ) | 
						
							| 22 | 16 17 21 | syl2anc |  |-  ( ph -> ( A. x e. V ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) <-> ( iota_ g e. B A. x e. V ( S ` ( F .x. x ) ) = ( g .xb ( S ` x ) ) ) = ( G ` F ) ) ) | 
						
							| 23 | 15 22 | mpbird |  |-  ( ph -> A. x e. V ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) ) | 
						
							| 24 |  | oveq2 |  |-  ( x = X -> ( F .x. x ) = ( F .x. X ) ) | 
						
							| 25 | 24 | fveq2d |  |-  ( x = X -> ( S ` ( F .x. x ) ) = ( S ` ( F .x. X ) ) ) | 
						
							| 26 |  | fveq2 |  |-  ( x = X -> ( S ` x ) = ( S ` X ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( x = X -> ( ( G ` F ) .xb ( S ` x ) ) = ( ( G ` F ) .xb ( S ` X ) ) ) | 
						
							| 28 | 25 27 | eqeq12d |  |-  ( x = X -> ( ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) <-> ( S ` ( F .x. X ) ) = ( ( G ` F ) .xb ( S ` X ) ) ) ) | 
						
							| 29 | 28 | rspcva |  |-  ( ( X e. V /\ A. x e. V ( S ` ( F .x. x ) ) = ( ( G ` F ) .xb ( S ` x ) ) ) -> ( S ` ( F .x. X ) ) = ( ( G ` F ) .xb ( S ` X ) ) ) | 
						
							| 30 | 12 23 29 | syl2anc |  |-  ( ph -> ( S ` ( F .x. X ) ) = ( ( G ` F ) .xb ( S ` X ) ) ) |