Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapval0.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmapval0.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmapval0.r |
|- R = ( Scalar ` U ) |
4 |
|
hgmapval0.o |
|- .0. = ( 0g ` R ) |
5 |
|
hgmapval0.g |
|- G = ( ( HGMap ` K ) ` W ) |
6 |
|
hgmapval0.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
8 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
9 |
1 2 7 8 6
|
dvh1dim |
|- ( ph -> E. x e. ( Base ` U ) x =/= ( 0g ` U ) ) |
10 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
11 |
|
eqid |
|- ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) |
12 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
13 |
6
|
adantr |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( K e. HL /\ W e. H ) ) |
14 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` U ) ) -> x e. ( Base ` U ) ) |
15 |
1 2 7 8 10 11 12 13 14
|
hdmapeq0 |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` x ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> x = ( 0g ` U ) ) ) |
16 |
15
|
biimpd |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` x ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) -> x = ( 0g ` U ) ) ) |
17 |
16
|
necon3ad |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( x =/= ( 0g ` U ) -> -. ( ( ( HDMap ` K ) ` W ) ` x ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) ) ) |
18 |
17
|
3impia |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> -. ( ( ( HDMap ` K ) ` W ) ` x ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) ) |
19 |
1 2 6
|
dvhlmod |
|- ( ph -> U e. LMod ) |
20 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
21 |
7 3 20 4 8
|
lmod0vs |
|- ( ( U e. LMod /\ x e. ( Base ` U ) ) -> ( .0. ( .s ` U ) x ) = ( 0g ` U ) ) |
22 |
19 21
|
sylan |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( .0. ( .s ` U ) x ) = ( 0g ` U ) ) |
23 |
22
|
fveq2d |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( .0. ( .s ` U ) x ) ) = ( ( ( HDMap ` K ) ` W ) ` ( 0g ` U ) ) ) |
24 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
25 |
|
eqid |
|- ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) |
26 |
3 24 4
|
lmod0cl |
|- ( U e. LMod -> .0. e. ( Base ` R ) ) |
27 |
19 26
|
syl |
|- ( ph -> .0. e. ( Base ` R ) ) |
28 |
27
|
adantr |
|- ( ( ph /\ x e. ( Base ` U ) ) -> .0. e. ( Base ` R ) ) |
29 |
1 2 7 20 3 24 10 25 12 5 13 14 28
|
hgmapvs |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( .0. ( .s ` U ) x ) ) = ( ( G ` .0. ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) |
30 |
1 2 8 10 11 12 6
|
hdmapval0 |
|- ( ph -> ( ( ( HDMap ` K ) ` W ) ` ( 0g ` U ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( 0g ` U ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) ) |
32 |
23 29 31
|
3eqtr3d |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( ( G ` .0. ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) ) |
33 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
34 |
|
eqid |
|- ( Scalar ` ( ( LCDual ` K ) ` W ) ) = ( Scalar ` ( ( LCDual ` K ) ` W ) ) |
35 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
36 |
|
eqid |
|- ( 0g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( 0g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
37 |
1 10 6
|
lcdlvec |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LVec ) |
38 |
37
|
adantr |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( ( LCDual ` K ) ` W ) e. LVec ) |
39 |
1 2 13
|
dvhlmod |
|- ( ( ph /\ x e. ( Base ` U ) ) -> U e. LMod ) |
40 |
39 26
|
syl |
|- ( ( ph /\ x e. ( Base ` U ) ) -> .0. e. ( Base ` R ) ) |
41 |
1 2 3 24 10 34 35 5 13 40
|
hgmapdcl |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( G ` .0. ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
42 |
1 2 7 10 33 12 13 14
|
hdmapcl |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` x ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
43 |
33 25 34 35 36 11 38 41 42
|
lvecvs0or |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( ( ( G ` .0. ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( ( G ` .0. ) = ( 0g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) \/ ( ( ( HDMap ` K ) ` W ) ` x ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) ) ) ) |
44 |
32 43
|
mpbid |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( ( G ` .0. ) = ( 0g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) \/ ( ( ( HDMap ` K ) ` W ) ` x ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) ) ) |
45 |
44
|
orcomd |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` x ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) \/ ( G ` .0. ) = ( 0g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) ) |
46 |
45
|
ord |
|- ( ( ph /\ x e. ( Base ` U ) ) -> ( -. ( ( ( HDMap ` K ) ` W ) ` x ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) -> ( G ` .0. ) = ( 0g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) ) |
47 |
46
|
3adant3 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( -. ( ( ( HDMap ` K ) ` W ) ` x ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) -> ( G ` .0. ) = ( 0g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) ) |
48 |
18 47
|
mpd |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( G ` .0. ) = ( 0g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
49 |
48
|
rexlimdv3a |
|- ( ph -> ( E. x e. ( Base ` U ) x =/= ( 0g ` U ) -> ( G ` .0. ) = ( 0g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) ) |
50 |
9 49
|
mpd |
|- ( ph -> ( G ` .0. ) = ( 0g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
51 |
1 2 3 4 10 34 36 6
|
lcd0 |
|- ( ph -> ( 0g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = .0. ) |
52 |
50 51
|
eqtrd |
|- ( ph -> ( G ` .0. ) = .0. ) |