Metamath Proof Explorer


Theorem hgmapval0

Description: Value of the scalar sigma map at zero. (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hgmapval0.h H = LHyp K
hgmapval0.u U = DVecH K W
hgmapval0.r R = Scalar U
hgmapval0.o 0 ˙ = 0 R
hgmapval0.g G = HGMap K W
hgmapval0.k φ K HL W H
Assertion hgmapval0 φ G 0 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 hgmapval0.h H = LHyp K
2 hgmapval0.u U = DVecH K W
3 hgmapval0.r R = Scalar U
4 hgmapval0.o 0 ˙ = 0 R
5 hgmapval0.g G = HGMap K W
6 hgmapval0.k φ K HL W H
7 eqid Base U = Base U
8 eqid 0 U = 0 U
9 1 2 7 8 6 dvh1dim φ x Base U x 0 U
10 eqid LCDual K W = LCDual K W
11 eqid 0 LCDual K W = 0 LCDual K W
12 eqid HDMap K W = HDMap K W
13 6 adantr φ x Base U K HL W H
14 simpr φ x Base U x Base U
15 1 2 7 8 10 11 12 13 14 hdmapeq0 φ x Base U HDMap K W x = 0 LCDual K W x = 0 U
16 15 biimpd φ x Base U HDMap K W x = 0 LCDual K W x = 0 U
17 16 necon3ad φ x Base U x 0 U ¬ HDMap K W x = 0 LCDual K W
18 17 3impia φ x Base U x 0 U ¬ HDMap K W x = 0 LCDual K W
19 1 2 6 dvhlmod φ U LMod
20 eqid U = U
21 7 3 20 4 8 lmod0vs U LMod x Base U 0 ˙ U x = 0 U
22 19 21 sylan φ x Base U 0 ˙ U x = 0 U
23 22 fveq2d φ x Base U HDMap K W 0 ˙ U x = HDMap K W 0 U
24 eqid Base R = Base R
25 eqid LCDual K W = LCDual K W
26 3 24 4 lmod0cl U LMod 0 ˙ Base R
27 19 26 syl φ 0 ˙ Base R
28 27 adantr φ x Base U 0 ˙ Base R
29 1 2 7 20 3 24 10 25 12 5 13 14 28 hgmapvs φ x Base U HDMap K W 0 ˙ U x = G 0 ˙ LCDual K W HDMap K W x
30 1 2 8 10 11 12 6 hdmapval0 φ HDMap K W 0 U = 0 LCDual K W
31 30 adantr φ x Base U HDMap K W 0 U = 0 LCDual K W
32 23 29 31 3eqtr3d φ x Base U G 0 ˙ LCDual K W HDMap K W x = 0 LCDual K W
33 eqid Base LCDual K W = Base LCDual K W
34 eqid Scalar LCDual K W = Scalar LCDual K W
35 eqid Base Scalar LCDual K W = Base Scalar LCDual K W
36 eqid 0 Scalar LCDual K W = 0 Scalar LCDual K W
37 1 10 6 lcdlvec φ LCDual K W LVec
38 37 adantr φ x Base U LCDual K W LVec
39 1 2 13 dvhlmod φ x Base U U LMod
40 39 26 syl φ x Base U 0 ˙ Base R
41 1 2 3 24 10 34 35 5 13 40 hgmapdcl φ x Base U G 0 ˙ Base Scalar LCDual K W
42 1 2 7 10 33 12 13 14 hdmapcl φ x Base U HDMap K W x Base LCDual K W
43 33 25 34 35 36 11 38 41 42 lvecvs0or φ x Base U G 0 ˙ LCDual K W HDMap K W x = 0 LCDual K W G 0 ˙ = 0 Scalar LCDual K W HDMap K W x = 0 LCDual K W
44 32 43 mpbid φ x Base U G 0 ˙ = 0 Scalar LCDual K W HDMap K W x = 0 LCDual K W
45 44 orcomd φ x Base U HDMap K W x = 0 LCDual K W G 0 ˙ = 0 Scalar LCDual K W
46 45 ord φ x Base U ¬ HDMap K W x = 0 LCDual K W G 0 ˙ = 0 Scalar LCDual K W
47 46 3adant3 φ x Base U x 0 U ¬ HDMap K W x = 0 LCDual K W G 0 ˙ = 0 Scalar LCDual K W
48 18 47 mpd φ x Base U x 0 U G 0 ˙ = 0 Scalar LCDual K W
49 48 rexlimdv3a φ x Base U x 0 U G 0 ˙ = 0 Scalar LCDual K W
50 9 49 mpd φ G 0 ˙ = 0 Scalar LCDual K W
51 1 2 3 4 10 34 36 6 lcd0 φ 0 Scalar LCDual K W = 0 ˙
52 50 51 eqtrd φ G 0 ˙ = 0 ˙