Metamath Proof Explorer


Theorem hgmapval1

Description: Value of the scalar sigma map at one. (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hgmapval1.h H=LHypK
hgmapval1.u U=DVecHKW
hgmapval1.r R=ScalarU
hgmapval1.i 1˙=1R
hgmapval1.g G=HGMapKW
hgmapval1.k φKHLWH
Assertion hgmapval1 φG1˙=1˙

Proof

Step Hyp Ref Expression
1 hgmapval1.h H=LHypK
2 hgmapval1.u U=DVecHKW
3 hgmapval1.r R=ScalarU
4 hgmapval1.i 1˙=1R
5 hgmapval1.g G=HGMapKW
6 hgmapval1.k φKHLWH
7 eqid BaseU=BaseU
8 eqid 0U=0U
9 1 2 7 8 6 dvh1dim φxBaseUx0U
10 eqid LCDualKW=LCDualKW
11 eqid ScalarLCDualKW=ScalarLCDualKW
12 eqid 1ScalarLCDualKW=1ScalarLCDualKW
13 1 2 3 4 10 11 12 6 lcd1 φ1ScalarLCDualKW=1˙
14 13 oveq1d φ1ScalarLCDualKWLCDualKWHDMapKWx=1˙LCDualKWHDMapKWx
15 14 3ad2ant1 φxBaseUx0U1ScalarLCDualKWLCDualKWHDMapKWx=1˙LCDualKWHDMapKWx
16 1 10 6 lcdlmod φLCDualKWLMod
17 16 3ad2ant1 φxBaseUx0ULCDualKWLMod
18 eqid BaseLCDualKW=BaseLCDualKW
19 eqid HDMapKW=HDMapKW
20 6 3ad2ant1 φxBaseUx0UKHLWH
21 simp2 φxBaseUx0UxBaseU
22 1 2 7 10 18 19 20 21 hdmapcl φxBaseUx0UHDMapKWxBaseLCDualKW
23 eqid LCDualKW=LCDualKW
24 18 11 23 12 lmodvs1 LCDualKWLModHDMapKWxBaseLCDualKW1ScalarLCDualKWLCDualKWHDMapKWx=HDMapKWx
25 17 22 24 syl2anc φxBaseUx0U1ScalarLCDualKWLCDualKWHDMapKWx=HDMapKWx
26 15 25 eqtr3d φxBaseUx0U1˙LCDualKWHDMapKWx=HDMapKWx
27 1 2 6 dvhlmod φULMod
28 27 3ad2ant1 φxBaseUx0UULMod
29 eqid U=U
30 7 3 29 4 lmodvs1 ULModxBaseU1˙Ux=x
31 28 21 30 syl2anc φxBaseUx0U1˙Ux=x
32 31 fveq2d φxBaseUx0UHDMapKW1˙Ux=HDMapKWx
33 eqid BaseR=BaseR
34 3 lmodring ULModRRing
35 33 4 ringidcl RRing1˙BaseR
36 27 34 35 3syl φ1˙BaseR
37 36 3ad2ant1 φxBaseUx0U1˙BaseR
38 1 2 7 29 3 33 10 23 19 5 20 21 37 hgmapvs φxBaseUx0UHDMapKW1˙Ux=G1˙LCDualKWHDMapKWx
39 26 32 38 3eqtr2rd φxBaseUx0UG1˙LCDualKWHDMapKWx=1˙LCDualKWHDMapKWx
40 eqid BaseScalarLCDualKW=BaseScalarLCDualKW
41 eqid 0LCDualKW=0LCDualKW
42 1 10 6 lcdlvec φLCDualKWLVec
43 42 3ad2ant1 φxBaseUx0ULCDualKWLVec
44 1 2 3 33 5 6 36 hgmapcl φG1˙BaseR
45 1 2 3 33 10 11 40 6 lcdsbase φBaseScalarLCDualKW=BaseR
46 44 45 eleqtrrd φG1˙BaseScalarLCDualKW
47 46 3ad2ant1 φxBaseUx0UG1˙BaseScalarLCDualKW
48 36 45 eleqtrrd φ1˙BaseScalarLCDualKW
49 48 3ad2ant1 φxBaseUx0U1˙BaseScalarLCDualKW
50 simp3 φxBaseUx0Ux0U
51 1 2 7 8 10 41 19 20 21 hdmapeq0 φxBaseUx0UHDMapKWx=0LCDualKWx=0U
52 51 necon3bid φxBaseUx0UHDMapKWx0LCDualKWx0U
53 50 52 mpbird φxBaseUx0UHDMapKWx0LCDualKW
54 18 23 11 40 41 43 47 49 22 53 lvecvscan2 φxBaseUx0UG1˙LCDualKWHDMapKWx=1˙LCDualKWHDMapKWxG1˙=1˙
55 39 54 mpbid φxBaseUx0UG1˙=1˙
56 55 rexlimdv3a φxBaseUx0UG1˙=1˙
57 9 56 mpd φG1˙=1˙