Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapval1.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmapval1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmapval1.r |
|- R = ( Scalar ` U ) |
4 |
|
hgmapval1.i |
|- .1. = ( 1r ` R ) |
5 |
|
hgmapval1.g |
|- G = ( ( HGMap ` K ) ` W ) |
6 |
|
hgmapval1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
7 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
8 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
9 |
1 2 7 8 6
|
dvh1dim |
|- ( ph -> E. x e. ( Base ` U ) x =/= ( 0g ` U ) ) |
10 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
11 |
|
eqid |
|- ( Scalar ` ( ( LCDual ` K ) ` W ) ) = ( Scalar ` ( ( LCDual ` K ) ` W ) ) |
12 |
|
eqid |
|- ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
13 |
1 2 3 4 10 11 12 6
|
lcd1 |
|- ( ph -> ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = .1. ) |
14 |
13
|
oveq1d |
|- ( ph -> ( ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( .1. ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( .1. ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) |
16 |
1 10 6
|
lcdlmod |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) |
17 |
16
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( LCDual ` K ) ` W ) e. LMod ) |
18 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
19 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
20 |
6
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
21 |
|
simp2 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> x e. ( Base ` U ) ) |
22 |
1 2 7 10 18 19 20 21
|
hdmapcl |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` x ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
23 |
|
eqid |
|- ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) |
24 |
18 11 23 12
|
lmodvs1 |
|- ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( ( ( HDMap ` K ) ` W ) ` x ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) -> ( ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( ( ( HDMap ` K ) ` W ) ` x ) ) |
25 |
17 22 24
|
syl2anc |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( ( ( HDMap ` K ) ` W ) ` x ) ) |
26 |
15 25
|
eqtr3d |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( .1. ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( ( ( HDMap ` K ) ` W ) ` x ) ) |
27 |
1 2 6
|
dvhlmod |
|- ( ph -> U e. LMod ) |
28 |
27
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> U e. LMod ) |
29 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
30 |
7 3 29 4
|
lmodvs1 |
|- ( ( U e. LMod /\ x e. ( Base ` U ) ) -> ( .1. ( .s ` U ) x ) = x ) |
31 |
28 21 30
|
syl2anc |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( .1. ( .s ` U ) x ) = x ) |
32 |
31
|
fveq2d |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( .1. ( .s ` U ) x ) ) = ( ( ( HDMap ` K ) ` W ) ` x ) ) |
33 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
34 |
3
|
lmodring |
|- ( U e. LMod -> R e. Ring ) |
35 |
33 4
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
36 |
27 34 35
|
3syl |
|- ( ph -> .1. e. ( Base ` R ) ) |
37 |
36
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> .1. e. ( Base ` R ) ) |
38 |
1 2 7 29 3 33 10 23 19 5 20 21 37
|
hgmapvs |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( .1. ( .s ` U ) x ) ) = ( ( G ` .1. ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) |
39 |
26 32 38
|
3eqtr2rd |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( G ` .1. ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( .1. ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) |
40 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
41 |
|
eqid |
|- ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) |
42 |
1 10 6
|
lcdlvec |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LVec ) |
43 |
42
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( LCDual ` K ) ` W ) e. LVec ) |
44 |
1 2 3 33 5 6 36
|
hgmapcl |
|- ( ph -> ( G ` .1. ) e. ( Base ` R ) ) |
45 |
1 2 3 33 10 11 40 6
|
lcdsbase |
|- ( ph -> ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( Base ` R ) ) |
46 |
44 45
|
eleqtrrd |
|- ( ph -> ( G ` .1. ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
47 |
46
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( G ` .1. ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
48 |
36 45
|
eleqtrrd |
|- ( ph -> .1. e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
49 |
48
|
3ad2ant1 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> .1. e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
50 |
|
simp3 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> x =/= ( 0g ` U ) ) |
51 |
1 2 7 8 10 41 19 20 21
|
hdmapeq0 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` x ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> x = ( 0g ` U ) ) ) |
52 |
51
|
necon3bid |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` x ) =/= ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> x =/= ( 0g ` U ) ) ) |
53 |
50 52
|
mpbird |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` x ) =/= ( 0g ` ( ( LCDual ` K ) ` W ) ) ) |
54 |
18 23 11 40 41 43 47 49 22 53
|
lvecvscan2 |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( G ` .1. ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( .1. ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) <-> ( G ` .1. ) = .1. ) ) |
55 |
39 54
|
mpbid |
|- ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( G ` .1. ) = .1. ) |
56 |
55
|
rexlimdv3a |
|- ( ph -> ( E. x e. ( Base ` U ) x =/= ( 0g ` U ) -> ( G ` .1. ) = .1. ) ) |
57 |
9 56
|
mpd |
|- ( ph -> ( G ` .1. ) = .1. ) |