| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapval1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmapval1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmapval1.r |  |-  R = ( Scalar ` U ) | 
						
							| 4 |  | hgmapval1.i |  |-  .1. = ( 1r ` R ) | 
						
							| 5 |  | hgmapval1.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 6 |  | hgmapval1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 7 |  | eqid |  |-  ( Base ` U ) = ( Base ` U ) | 
						
							| 8 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 9 | 1 2 7 8 6 | dvh1dim |  |-  ( ph -> E. x e. ( Base ` U ) x =/= ( 0g ` U ) ) | 
						
							| 10 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 11 |  | eqid |  |-  ( Scalar ` ( ( LCDual ` K ) ` W ) ) = ( Scalar ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 12 |  | eqid |  |-  ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 13 | 1 2 3 4 10 11 12 6 | lcd1 |  |-  ( ph -> ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = .1. ) | 
						
							| 14 | 13 | oveq1d |  |-  ( ph -> ( ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( .1. ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) | 
						
							| 15 | 14 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( .1. ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) | 
						
							| 16 | 1 10 6 | lcdlmod |  |-  ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) | 
						
							| 17 | 16 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( LCDual ` K ) ` W ) e. LMod ) | 
						
							| 18 |  | eqid |  |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 19 |  | eqid |  |-  ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) | 
						
							| 20 | 6 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 21 |  | simp2 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> x e. ( Base ` U ) ) | 
						
							| 22 | 1 2 7 10 18 19 20 21 | hdmapcl |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` x ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 23 |  | eqid |  |-  ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 24 | 18 11 23 12 | lmodvs1 |  |-  ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( ( ( HDMap ` K ) ` W ) ` x ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) -> ( ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( ( ( HDMap ` K ) ` W ) ` x ) ) | 
						
							| 25 | 17 22 24 | syl2anc |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( 1r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( ( ( HDMap ` K ) ` W ) ` x ) ) | 
						
							| 26 | 15 25 | eqtr3d |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( .1. ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( ( ( HDMap ` K ) ` W ) ` x ) ) | 
						
							| 27 | 1 2 6 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 28 | 27 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> U e. LMod ) | 
						
							| 29 |  | eqid |  |-  ( .s ` U ) = ( .s ` U ) | 
						
							| 30 | 7 3 29 4 | lmodvs1 |  |-  ( ( U e. LMod /\ x e. ( Base ` U ) ) -> ( .1. ( .s ` U ) x ) = x ) | 
						
							| 31 | 28 21 30 | syl2anc |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( .1. ( .s ` U ) x ) = x ) | 
						
							| 32 | 31 | fveq2d |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( .1. ( .s ` U ) x ) ) = ( ( ( HDMap ` K ) ` W ) ` x ) ) | 
						
							| 33 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 34 | 3 | lmodring |  |-  ( U e. LMod -> R e. Ring ) | 
						
							| 35 | 33 4 | ringidcl |  |-  ( R e. Ring -> .1. e. ( Base ` R ) ) | 
						
							| 36 | 27 34 35 | 3syl |  |-  ( ph -> .1. e. ( Base ` R ) ) | 
						
							| 37 | 36 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> .1. e. ( Base ` R ) ) | 
						
							| 38 | 1 2 7 29 3 33 10 23 19 5 20 21 37 | hgmapvs |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( .1. ( .s ` U ) x ) ) = ( ( G ` .1. ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) | 
						
							| 39 | 26 32 38 | 3eqtr2rd |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( G ` .1. ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( .1. ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) ) | 
						
							| 40 |  | eqid |  |-  ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 41 |  | eqid |  |-  ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 42 | 1 10 6 | lcdlvec |  |-  ( ph -> ( ( LCDual ` K ) ` W ) e. LVec ) | 
						
							| 43 | 42 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( LCDual ` K ) ` W ) e. LVec ) | 
						
							| 44 | 1 2 3 33 5 6 36 | hgmapcl |  |-  ( ph -> ( G ` .1. ) e. ( Base ` R ) ) | 
						
							| 45 | 1 2 3 33 10 11 40 6 | lcdsbase |  |-  ( ph -> ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( Base ` R ) ) | 
						
							| 46 | 44 45 | eleqtrrd |  |-  ( ph -> ( G ` .1. ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) | 
						
							| 47 | 46 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( G ` .1. ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) | 
						
							| 48 | 36 45 | eleqtrrd |  |-  ( ph -> .1. e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) | 
						
							| 49 | 48 | 3ad2ant1 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> .1. e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) | 
						
							| 50 |  | simp3 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> x =/= ( 0g ` U ) ) | 
						
							| 51 | 1 2 7 8 10 41 19 20 21 | hdmapeq0 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` x ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> x = ( 0g ` U ) ) ) | 
						
							| 52 | 51 | necon3bid |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` x ) =/= ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> x =/= ( 0g ` U ) ) ) | 
						
							| 53 | 50 52 | mpbird |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` x ) =/= ( 0g ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 54 | 18 23 11 40 41 43 47 49 22 53 | lvecvscan2 |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( ( ( G ` .1. ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) = ( .1. ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` x ) ) <-> ( G ` .1. ) = .1. ) ) | 
						
							| 55 | 39 54 | mpbid |  |-  ( ( ph /\ x e. ( Base ` U ) /\ x =/= ( 0g ` U ) ) -> ( G ` .1. ) = .1. ) | 
						
							| 56 | 55 | rexlimdv3a |  |-  ( ph -> ( E. x e. ( Base ` U ) x =/= ( 0g ` U ) -> ( G ` .1. ) = .1. ) ) | 
						
							| 57 | 9 56 | mpd |  |-  ( ph -> ( G ` .1. ) = .1. ) |