Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapadd.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmapadd.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmapadd.r |
|- R = ( Scalar ` U ) |
4 |
|
hgmapadd.b |
|- B = ( Base ` R ) |
5 |
|
hgmapadd.p |
|- .+ = ( +g ` R ) |
6 |
|
hgmapadd.g |
|- G = ( ( HGMap ` K ) ` W ) |
7 |
|
hgmapadd.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
8 |
|
hgmapadd.x |
|- ( ph -> X e. B ) |
9 |
|
hgmapadd.y |
|- ( ph -> Y e. B ) |
10 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
11 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
12 |
1 2 10 11 7
|
dvh1dim |
|- ( ph -> E. t e. ( Base ` U ) t =/= ( 0g ` U ) ) |
13 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
14 |
1 13 7
|
lcdlmod |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) |
15 |
14
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( LCDual ` K ) ` W ) e. LMod ) |
16 |
|
eqid |
|- ( Scalar ` ( ( LCDual ` K ) ` W ) ) = ( Scalar ` ( ( LCDual ` K ) ` W ) ) |
17 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
18 |
7
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
19 |
8
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> X e. B ) |
20 |
1 2 3 4 13 16 17 6 18 19
|
hgmapdcl |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
21 |
1 2 3 4 13 16 17 6 7 9
|
hgmapdcl |
|- ( ph -> ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
22 |
21
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
23 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
24 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
25 |
|
simp2 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> t e. ( Base ` U ) ) |
26 |
1 2 10 13 23 24 18 25
|
hdmapcl |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` t ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
27 |
|
eqid |
|- ( +g ` ( ( LCDual ` K ) ` W ) ) = ( +g ` ( ( LCDual ` K ) ` W ) ) |
28 |
|
eqid |
|- ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) |
29 |
|
eqid |
|- ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
30 |
23 27 16 28 17 29
|
lmodvsdir |
|- ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) /\ ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) /\ ( ( ( HDMap ` K ) ` W ) ` t ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) ) -> ( ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) ) |
31 |
15 20 22 26 30
|
syl13anc |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) ) |
32 |
1 2 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
33 |
32
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> U e. LMod ) |
34 |
9
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> Y e. B ) |
35 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
36 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
37 |
10 35 3 36 4 5
|
lmodvsdir |
|- ( ( U e. LMod /\ ( X e. B /\ Y e. B /\ t e. ( Base ` U ) ) ) -> ( ( X .+ Y ) ( .s ` U ) t ) = ( ( X ( .s ` U ) t ) ( +g ` U ) ( Y ( .s ` U ) t ) ) ) |
38 |
33 19 34 25 37
|
syl13anc |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( X .+ Y ) ( .s ` U ) t ) = ( ( X ( .s ` U ) t ) ( +g ` U ) ( Y ( .s ` U ) t ) ) ) |
39 |
38
|
fveq2d |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( ( X .+ Y ) ( .s ` U ) t ) ) = ( ( ( HDMap ` K ) ` W ) ` ( ( X ( .s ` U ) t ) ( +g ` U ) ( Y ( .s ` U ) t ) ) ) ) |
40 |
10 3 36 4
|
lmodvscl |
|- ( ( U e. LMod /\ X e. B /\ t e. ( Base ` U ) ) -> ( X ( .s ` U ) t ) e. ( Base ` U ) ) |
41 |
33 19 25 40
|
syl3anc |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( X ( .s ` U ) t ) e. ( Base ` U ) ) |
42 |
10 3 36 4
|
lmodvscl |
|- ( ( U e. LMod /\ Y e. B /\ t e. ( Base ` U ) ) -> ( Y ( .s ` U ) t ) e. ( Base ` U ) ) |
43 |
33 34 25 42
|
syl3anc |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( Y ( .s ` U ) t ) e. ( Base ` U ) ) |
44 |
1 2 10 35 13 27 24 18 41 43
|
hdmapadd |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( ( X ( .s ` U ) t ) ( +g ` U ) ( Y ( .s ` U ) t ) ) ) = ( ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) ) ) |
45 |
1 2 10 36 3 4 13 28 24 6 18 25 19
|
hgmapvs |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) = ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
46 |
1 2 10 36 3 4 13 28 24 6 18 25 34
|
hgmapvs |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) = ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
47 |
45 46
|
oveq12d |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) ) = ( ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) ) |
48 |
39 44 47
|
3eqtrrd |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) = ( ( ( HDMap ` K ) ` W ) ` ( ( X .+ Y ) ( .s ` U ) t ) ) ) |
49 |
3 4 5
|
lmodacl |
|- ( ( U e. LMod /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
50 |
32 8 9 49
|
syl3anc |
|- ( ph -> ( X .+ Y ) e. B ) |
51 |
50
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( X .+ Y ) e. B ) |
52 |
1 2 10 36 3 4 13 28 24 6 18 25 51
|
hgmapvs |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( ( X .+ Y ) ( .s ` U ) t ) ) = ( ( G ` ( X .+ Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
53 |
31 48 52
|
3eqtrrd |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( G ` ( X .+ Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
54 |
|
eqid |
|- ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) |
55 |
1 13 7
|
lcdlvec |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LVec ) |
56 |
55
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( LCDual ` K ) ` W ) e. LVec ) |
57 |
1 2 3 4 13 16 17 6 7 50
|
hgmapdcl |
|- ( ph -> ( G ` ( X .+ Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
58 |
57
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` ( X .+ Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
59 |
1 2 3 4 13 16 17 6 7 8
|
hgmapdcl |
|- ( ph -> ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
60 |
16 17 29
|
lmodacl |
|- ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) /\ ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
61 |
14 59 21 60
|
syl3anc |
|- ( ph -> ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
62 |
61
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
63 |
|
simp3 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> t =/= ( 0g ` U ) ) |
64 |
1 2 10 11 13 54 24 18 25
|
hdmapeq0 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` t ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> t = ( 0g ` U ) ) ) |
65 |
64
|
necon3bid |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` t ) =/= ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> t =/= ( 0g ` U ) ) ) |
66 |
63 65
|
mpbird |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` t ) =/= ( 0g ` ( ( LCDual ` K ) ` W ) ) ) |
67 |
23 28 16 17 54 56 58 62 26 66
|
lvecvscan2 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( G ` ( X .+ Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) <-> ( G ` ( X .+ Y ) ) = ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) ) |
68 |
53 67
|
mpbid |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` ( X .+ Y ) ) = ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) |
69 |
68
|
rexlimdv3a |
|- ( ph -> ( E. t e. ( Base ` U ) t =/= ( 0g ` U ) -> ( G ` ( X .+ Y ) ) = ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) ) |
70 |
12 69
|
mpd |
|- ( ph -> ( G ` ( X .+ Y ) ) = ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) |
71 |
1 2 3 5 13 16 29 7
|
lcdsadd |
|- ( ph -> ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = .+ ) |
72 |
71
|
oveqd |
|- ( ph -> ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) = ( ( G ` X ) .+ ( G ` Y ) ) ) |
73 |
70 72
|
eqtrd |
|- ( ph -> ( G ` ( X .+ Y ) ) = ( ( G ` X ) .+ ( G ` Y ) ) ) |