| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgmapadd.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hgmapadd.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hgmapadd.r |
|- R = ( Scalar ` U ) |
| 4 |
|
hgmapadd.b |
|- B = ( Base ` R ) |
| 5 |
|
hgmapadd.p |
|- .+ = ( +g ` R ) |
| 6 |
|
hgmapadd.g |
|- G = ( ( HGMap ` K ) ` W ) |
| 7 |
|
hgmapadd.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
hgmapadd.x |
|- ( ph -> X e. B ) |
| 9 |
|
hgmapadd.y |
|- ( ph -> Y e. B ) |
| 10 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 11 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 12 |
1 2 10 11 7
|
dvh1dim |
|- ( ph -> E. t e. ( Base ` U ) t =/= ( 0g ` U ) ) |
| 13 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
| 14 |
1 13 7
|
lcdlmod |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) |
| 15 |
14
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( LCDual ` K ) ` W ) e. LMod ) |
| 16 |
|
eqid |
|- ( Scalar ` ( ( LCDual ` K ) ` W ) ) = ( Scalar ` ( ( LCDual ` K ) ` W ) ) |
| 17 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
| 18 |
7
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
| 19 |
8
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> X e. B ) |
| 20 |
1 2 3 4 13 16 17 6 18 19
|
hgmapdcl |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 21 |
1 2 3 4 13 16 17 6 7 9
|
hgmapdcl |
|- ( ph -> ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 22 |
21
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 23 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
| 24 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
| 25 |
|
simp2 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> t e. ( Base ` U ) ) |
| 26 |
1 2 10 13 23 24 18 25
|
hdmapcl |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` t ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
| 27 |
|
eqid |
|- ( +g ` ( ( LCDual ` K ) ` W ) ) = ( +g ` ( ( LCDual ` K ) ` W ) ) |
| 28 |
|
eqid |
|- ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) |
| 29 |
|
eqid |
|- ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
| 30 |
23 27 16 28 17 29
|
lmodvsdir |
|- ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) /\ ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) /\ ( ( ( HDMap ` K ) ` W ) ` t ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) ) -> ( ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) ) |
| 31 |
15 20 22 26 30
|
syl13anc |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) ) |
| 32 |
1 2 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 33 |
32
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> U e. LMod ) |
| 34 |
9
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> Y e. B ) |
| 35 |
|
eqid |
|- ( +g ` U ) = ( +g ` U ) |
| 36 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
| 37 |
10 35 3 36 4 5
|
lmodvsdir |
|- ( ( U e. LMod /\ ( X e. B /\ Y e. B /\ t e. ( Base ` U ) ) ) -> ( ( X .+ Y ) ( .s ` U ) t ) = ( ( X ( .s ` U ) t ) ( +g ` U ) ( Y ( .s ` U ) t ) ) ) |
| 38 |
33 19 34 25 37
|
syl13anc |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( X .+ Y ) ( .s ` U ) t ) = ( ( X ( .s ` U ) t ) ( +g ` U ) ( Y ( .s ` U ) t ) ) ) |
| 39 |
38
|
fveq2d |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( ( X .+ Y ) ( .s ` U ) t ) ) = ( ( ( HDMap ` K ) ` W ) ` ( ( X ( .s ` U ) t ) ( +g ` U ) ( Y ( .s ` U ) t ) ) ) ) |
| 40 |
10 3 36 4
|
lmodvscl |
|- ( ( U e. LMod /\ X e. B /\ t e. ( Base ` U ) ) -> ( X ( .s ` U ) t ) e. ( Base ` U ) ) |
| 41 |
33 19 25 40
|
syl3anc |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( X ( .s ` U ) t ) e. ( Base ` U ) ) |
| 42 |
10 3 36 4
|
lmodvscl |
|- ( ( U e. LMod /\ Y e. B /\ t e. ( Base ` U ) ) -> ( Y ( .s ` U ) t ) e. ( Base ` U ) ) |
| 43 |
33 34 25 42
|
syl3anc |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( Y ( .s ` U ) t ) e. ( Base ` U ) ) |
| 44 |
1 2 10 35 13 27 24 18 41 43
|
hdmapadd |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( ( X ( .s ` U ) t ) ( +g ` U ) ( Y ( .s ` U ) t ) ) ) = ( ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) ) ) |
| 45 |
1 2 10 36 3 4 13 28 24 6 18 25 19
|
hgmapvs |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) = ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
| 46 |
1 2 10 36 3 4 13 28 24 6 18 25 34
|
hgmapvs |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) = ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
| 47 |
45 46
|
oveq12d |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) ) = ( ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) ) |
| 48 |
39 44 47
|
3eqtrrd |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ( +g ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) = ( ( ( HDMap ` K ) ` W ) ` ( ( X .+ Y ) ( .s ` U ) t ) ) ) |
| 49 |
3 4 5
|
lmodacl |
|- ( ( U e. LMod /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
| 50 |
32 8 9 49
|
syl3anc |
|- ( ph -> ( X .+ Y ) e. B ) |
| 51 |
50
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( X .+ Y ) e. B ) |
| 52 |
1 2 10 36 3 4 13 28 24 6 18 25 51
|
hgmapvs |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( ( X .+ Y ) ( .s ` U ) t ) ) = ( ( G ` ( X .+ Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
| 53 |
31 48 52
|
3eqtrrd |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( G ` ( X .+ Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
| 54 |
|
eqid |
|- ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) |
| 55 |
1 13 7
|
lcdlvec |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LVec ) |
| 56 |
55
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( LCDual ` K ) ` W ) e. LVec ) |
| 57 |
1 2 3 4 13 16 17 6 7 50
|
hgmapdcl |
|- ( ph -> ( G ` ( X .+ Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 58 |
57
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` ( X .+ Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 59 |
1 2 3 4 13 16 17 6 7 8
|
hgmapdcl |
|- ( ph -> ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 60 |
16 17 29
|
lmodacl |
|- ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) /\ ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 61 |
14 59 21 60
|
syl3anc |
|- ( ph -> ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 62 |
61
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 63 |
|
simp3 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> t =/= ( 0g ` U ) ) |
| 64 |
1 2 10 11 13 54 24 18 25
|
hdmapeq0 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` t ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> t = ( 0g ` U ) ) ) |
| 65 |
64
|
necon3bid |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` t ) =/= ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> t =/= ( 0g ` U ) ) ) |
| 66 |
63 65
|
mpbird |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` t ) =/= ( 0g ` ( ( LCDual ` K ) ` W ) ) ) |
| 67 |
23 28 16 17 54 56 58 62 26 66
|
lvecvscan2 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( G ` ( X .+ Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) <-> ( G ` ( X .+ Y ) ) = ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) ) |
| 68 |
53 67
|
mpbid |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` ( X .+ Y ) ) = ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) |
| 69 |
68
|
rexlimdv3a |
|- ( ph -> ( E. t e. ( Base ` U ) t =/= ( 0g ` U ) -> ( G ` ( X .+ Y ) ) = ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) ) |
| 70 |
12 69
|
mpd |
|- ( ph -> ( G ` ( X .+ Y ) ) = ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) |
| 71 |
1 2 3 5 13 16 29 7
|
lcdsadd |
|- ( ph -> ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = .+ ) |
| 72 |
71
|
oveqd |
|- ( ph -> ( ( G ` X ) ( +g ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) = ( ( G ` X ) .+ ( G ` Y ) ) ) |
| 73 |
70 72
|
eqtrd |
|- ( ph -> ( G ` ( X .+ Y ) ) = ( ( G ` X ) .+ ( G ` Y ) ) ) |