| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgmapmul.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hgmapmul.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hgmapmul.r |
|- R = ( Scalar ` U ) |
| 4 |
|
hgmapmul.b |
|- B = ( Base ` R ) |
| 5 |
|
hgmapmul.t |
|- .x. = ( .r ` R ) |
| 6 |
|
hgmapmul.g |
|- G = ( ( HGMap ` K ) ` W ) |
| 7 |
|
hgmapmul.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
hgmapmul.x |
|- ( ph -> X e. B ) |
| 9 |
|
hgmapmul.y |
|- ( ph -> Y e. B ) |
| 10 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
| 11 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
| 12 |
1 2 10 11 7
|
dvh1dim |
|- ( ph -> E. t e. ( Base ` U ) t =/= ( 0g ` U ) ) |
| 13 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
| 14 |
1 13 7
|
lcdlmod |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) |
| 15 |
14
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( LCDual ` K ) ` W ) e. LMod ) |
| 16 |
|
eqid |
|- ( Scalar ` ( ( LCDual ` K ) ` W ) ) = ( Scalar ` ( ( LCDual ` K ) ` W ) ) |
| 17 |
|
eqid |
|- ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
| 18 |
1 2 3 4 13 16 17 6 7 8
|
hgmapdcl |
|- ( ph -> ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 19 |
18
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 20 |
1 2 3 4 13 16 17 6 7 9
|
hgmapdcl |
|- ( ph -> ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 22 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
| 23 |
|
eqid |
|- ( ( HDMap ` K ) ` W ) = ( ( HDMap ` K ) ` W ) |
| 24 |
7
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
| 25 |
|
simp2 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> t e. ( Base ` U ) ) |
| 26 |
1 2 10 13 22 23 24 25
|
hdmapcl |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` t ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
| 27 |
|
eqid |
|- ( .s ` ( ( LCDual ` K ) ` W ) ) = ( .s ` ( ( LCDual ` K ) ` W ) ) |
| 28 |
|
eqid |
|- ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) = ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) |
| 29 |
22 16 27 17 28
|
lmodvsass |
|- ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) /\ ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) /\ ( ( ( HDMap ` K ) ` W ) ` t ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) ) -> ( ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) ) |
| 30 |
15 19 21 26 29
|
syl13anc |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) ) |
| 31 |
1 2 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 32 |
31
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> U e. LMod ) |
| 33 |
8
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> X e. B ) |
| 34 |
9
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> Y e. B ) |
| 35 |
|
eqid |
|- ( .s ` U ) = ( .s ` U ) |
| 36 |
10 3 35 4 5
|
lmodvsass |
|- ( ( U e. LMod /\ ( X e. B /\ Y e. B /\ t e. ( Base ` U ) ) ) -> ( ( X .x. Y ) ( .s ` U ) t ) = ( X ( .s ` U ) ( Y ( .s ` U ) t ) ) ) |
| 37 |
32 33 34 25 36
|
syl13anc |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( X .x. Y ) ( .s ` U ) t ) = ( X ( .s ` U ) ( Y ( .s ` U ) t ) ) ) |
| 38 |
37
|
fveq2d |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( ( X .x. Y ) ( .s ` U ) t ) ) = ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) ( Y ( .s ` U ) t ) ) ) ) |
| 39 |
10 3 35 4
|
lmodvscl |
|- ( ( U e. LMod /\ Y e. B /\ t e. ( Base ` U ) ) -> ( Y ( .s ` U ) t ) e. ( Base ` U ) ) |
| 40 |
32 34 25 39
|
syl3anc |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( Y ( .s ` U ) t ) e. ( Base ` U ) ) |
| 41 |
1 2 10 35 3 4 13 27 23 6 24 40 33
|
hgmapvs |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( X ( .s ` U ) ( Y ( .s ` U ) t ) ) ) = ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) ) ) |
| 42 |
1 2 10 35 3 4 13 27 23 6 24 25 34
|
hgmapvs |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) = ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
| 43 |
42
|
oveq2d |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` ( Y ( .s ` U ) t ) ) ) = ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) ) |
| 44 |
38 41 43
|
3eqtrd |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( ( X .x. Y ) ( .s ` U ) t ) ) = ( ( G ` X ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( G ` Y ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) ) |
| 45 |
3 4 5
|
lmodmcl |
|- ( ( U e. LMod /\ X e. B /\ Y e. B ) -> ( X .x. Y ) e. B ) |
| 46 |
31 8 9 45
|
syl3anc |
|- ( ph -> ( X .x. Y ) e. B ) |
| 47 |
46
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( X .x. Y ) e. B ) |
| 48 |
1 2 10 35 3 4 13 27 23 6 24 25 47
|
hgmapvs |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` ( ( X .x. Y ) ( .s ` U ) t ) ) = ( ( G ` ( X .x. Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
| 49 |
30 44 48
|
3eqtr2rd |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( G ` ( X .x. Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) ) |
| 50 |
|
eqid |
|- ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) |
| 51 |
1 13 7
|
lcdlvec |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LVec ) |
| 52 |
51
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( LCDual ` K ) ` W ) e. LVec ) |
| 53 |
1 2 3 4 13 16 17 6 7 46
|
hgmapdcl |
|- ( ph -> ( G ` ( X .x. Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 54 |
53
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` ( X .x. Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 55 |
16 17 28
|
lmodmcl |
|- ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( G ` X ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) /\ ( G ` Y ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) -> ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 56 |
14 18 20 55
|
syl3anc |
|- ( ph -> ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 57 |
56
|
3ad2ant1 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) e. ( Base ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ) |
| 58 |
|
simp3 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> t =/= ( 0g ` U ) ) |
| 59 |
1 2 10 11 13 50 23 24 25
|
hdmapeq0 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` t ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> t = ( 0g ` U ) ) ) |
| 60 |
59
|
necon3bid |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( ( HDMap ` K ) ` W ) ` t ) =/= ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> t =/= ( 0g ` U ) ) ) |
| 61 |
58 60
|
mpbird |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( HDMap ` K ) ` W ) ` t ) =/= ( 0g ` ( ( LCDual ` K ) ` W ) ) ) |
| 62 |
22 27 16 17 50 52 54 57 26 61
|
lvecvscan2 |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( ( ( G ` ( X .x. Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) = ( ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ( .s ` ( ( LCDual ` K ) ` W ) ) ( ( ( HDMap ` K ) ` W ) ` t ) ) <-> ( G ` ( X .x. Y ) ) = ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) ) |
| 63 |
49 62
|
mpbid |
|- ( ( ph /\ t e. ( Base ` U ) /\ t =/= ( 0g ` U ) ) -> ( G ` ( X .x. Y ) ) = ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) |
| 64 |
63
|
rexlimdv3a |
|- ( ph -> ( E. t e. ( Base ` U ) t =/= ( 0g ` U ) -> ( G ` ( X .x. Y ) ) = ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) ) |
| 65 |
12 64
|
mpd |
|- ( ph -> ( G ` ( X .x. Y ) ) = ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) ) |
| 66 |
1 2 3 4 6 7 8
|
hgmapcl |
|- ( ph -> ( G ` X ) e. B ) |
| 67 |
1 2 3 4 6 7 9
|
hgmapcl |
|- ( ph -> ( G ` Y ) e. B ) |
| 68 |
1 2 3 4 5 13 16 28 7 66 67
|
lcdsmul |
|- ( ph -> ( ( G ` X ) ( .r ` ( Scalar ` ( ( LCDual ` K ) ` W ) ) ) ( G ` Y ) ) = ( ( G ` Y ) .x. ( G ` X ) ) ) |
| 69 |
65 68
|
eqtrd |
|- ( ph -> ( G ` ( X .x. Y ) ) = ( ( G ` Y ) .x. ( G ` X ) ) ) |