Metamath Proof Explorer


Theorem hgmaprnlem1N

Description: Lemma for hgmaprnN . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h
|- H = ( LHyp ` K )
hgmaprnlem1.u
|- U = ( ( DVecH ` K ) ` W )
hgmaprnlem1.v
|- V = ( Base ` U )
hgmaprnlem1.r
|- R = ( Scalar ` U )
hgmaprnlem1.b
|- B = ( Base ` R )
hgmaprnlem1.t
|- .x. = ( .s ` U )
hgmaprnlem1.o
|- .0. = ( 0g ` U )
hgmaprnlem1.c
|- C = ( ( LCDual ` K ) ` W )
hgmaprnlem1.d
|- D = ( Base ` C )
hgmaprnlem1.p
|- P = ( Scalar ` C )
hgmaprnlem1.a
|- A = ( Base ` P )
hgmaprnlem1.e
|- .xb = ( .s ` C )
hgmaprnlem1.q
|- Q = ( 0g ` C )
hgmaprnlem1.s
|- S = ( ( HDMap ` K ) ` W )
hgmaprnlem1.g
|- G = ( ( HGMap ` K ) ` W )
hgmaprnlem1.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hgmaprnlem1.z
|- ( ph -> z e. A )
hgmaprnlem1.t2
|- ( ph -> t e. ( V \ { .0. } ) )
hgmaprnlem1.s2
|- ( ph -> s e. V )
hgmaprnlem1.sz
|- ( ph -> ( S ` s ) = ( z .xb ( S ` t ) ) )
hgmaprnlem1.k2
|- ( ph -> k e. B )
hgmaprnlem1.sk
|- ( ph -> s = ( k .x. t ) )
Assertion hgmaprnlem1N
|- ( ph -> z e. ran G )

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h
 |-  H = ( LHyp ` K )
2 hgmaprnlem1.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hgmaprnlem1.v
 |-  V = ( Base ` U )
4 hgmaprnlem1.r
 |-  R = ( Scalar ` U )
5 hgmaprnlem1.b
 |-  B = ( Base ` R )
6 hgmaprnlem1.t
 |-  .x. = ( .s ` U )
7 hgmaprnlem1.o
 |-  .0. = ( 0g ` U )
8 hgmaprnlem1.c
 |-  C = ( ( LCDual ` K ) ` W )
9 hgmaprnlem1.d
 |-  D = ( Base ` C )
10 hgmaprnlem1.p
 |-  P = ( Scalar ` C )
11 hgmaprnlem1.a
 |-  A = ( Base ` P )
12 hgmaprnlem1.e
 |-  .xb = ( .s ` C )
13 hgmaprnlem1.q
 |-  Q = ( 0g ` C )
14 hgmaprnlem1.s
 |-  S = ( ( HDMap ` K ) ` W )
15 hgmaprnlem1.g
 |-  G = ( ( HGMap ` K ) ` W )
16 hgmaprnlem1.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
17 hgmaprnlem1.z
 |-  ( ph -> z e. A )
18 hgmaprnlem1.t2
 |-  ( ph -> t e. ( V \ { .0. } ) )
19 hgmaprnlem1.s2
 |-  ( ph -> s e. V )
20 hgmaprnlem1.sz
 |-  ( ph -> ( S ` s ) = ( z .xb ( S ` t ) ) )
21 hgmaprnlem1.k2
 |-  ( ph -> k e. B )
22 hgmaprnlem1.sk
 |-  ( ph -> s = ( k .x. t ) )
23 22 fveq2d
 |-  ( ph -> ( S ` s ) = ( S ` ( k .x. t ) ) )
24 18 eldifad
 |-  ( ph -> t e. V )
25 1 2 3 6 4 5 8 12 14 15 16 24 21 hgmapvs
 |-  ( ph -> ( S ` ( k .x. t ) ) = ( ( G ` k ) .xb ( S ` t ) ) )
26 23 20 25 3eqtr3d
 |-  ( ph -> ( z .xb ( S ` t ) ) = ( ( G ` k ) .xb ( S ` t ) ) )
27 1 8 16 lcdlvec
 |-  ( ph -> C e. LVec )
28 1 2 4 5 8 10 11 15 16 21 hgmapdcl
 |-  ( ph -> ( G ` k ) e. A )
29 1 2 3 8 9 14 16 24 hdmapcl
 |-  ( ph -> ( S ` t ) e. D )
30 eldifsni
 |-  ( t e. ( V \ { .0. } ) -> t =/= .0. )
31 18 30 syl
 |-  ( ph -> t =/= .0. )
32 1 2 3 7 8 13 14 16 24 hdmapeq0
 |-  ( ph -> ( ( S ` t ) = Q <-> t = .0. ) )
33 32 necon3bid
 |-  ( ph -> ( ( S ` t ) =/= Q <-> t =/= .0. ) )
34 31 33 mpbird
 |-  ( ph -> ( S ` t ) =/= Q )
35 9 12 10 11 13 27 17 28 29 34 lvecvscan2
 |-  ( ph -> ( ( z .xb ( S ` t ) ) = ( ( G ` k ) .xb ( S ` t ) ) <-> z = ( G ` k ) ) )
36 26 35 mpbid
 |-  ( ph -> z = ( G ` k ) )
37 1 2 4 5 15 16 hgmapfnN
 |-  ( ph -> G Fn B )
38 fnfvelrn
 |-  ( ( G Fn B /\ k e. B ) -> ( G ` k ) e. ran G )
39 37 21 38 syl2anc
 |-  ( ph -> ( G ` k ) e. ran G )
40 36 39 eqeltrd
 |-  ( ph -> z e. ran G )