| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmaprnlem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmaprnlem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmaprnlem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hgmaprnlem1.r |  |-  R = ( Scalar ` U ) | 
						
							| 5 |  | hgmaprnlem1.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | hgmaprnlem1.t |  |-  .x. = ( .s ` U ) | 
						
							| 7 |  | hgmaprnlem1.o |  |-  .0. = ( 0g ` U ) | 
						
							| 8 |  | hgmaprnlem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | hgmaprnlem1.d |  |-  D = ( Base ` C ) | 
						
							| 10 |  | hgmaprnlem1.p |  |-  P = ( Scalar ` C ) | 
						
							| 11 |  | hgmaprnlem1.a |  |-  A = ( Base ` P ) | 
						
							| 12 |  | hgmaprnlem1.e |  |-  .xb = ( .s ` C ) | 
						
							| 13 |  | hgmaprnlem1.q |  |-  Q = ( 0g ` C ) | 
						
							| 14 |  | hgmaprnlem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 15 |  | hgmaprnlem1.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 16 |  | hgmaprnlem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hgmaprnlem1.z |  |-  ( ph -> z e. A ) | 
						
							| 18 |  | hgmaprnlem1.t2 |  |-  ( ph -> t e. ( V \ { .0. } ) ) | 
						
							| 19 |  | hgmaprnlem1.s2 |  |-  ( ph -> s e. V ) | 
						
							| 20 |  | hgmaprnlem1.sz |  |-  ( ph -> ( S ` s ) = ( z .xb ( S ` t ) ) ) | 
						
							| 21 |  | hgmaprnlem1.k2 |  |-  ( ph -> k e. B ) | 
						
							| 22 |  | hgmaprnlem1.sk |  |-  ( ph -> s = ( k .x. t ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ph -> ( S ` s ) = ( S ` ( k .x. t ) ) ) | 
						
							| 24 | 18 | eldifad |  |-  ( ph -> t e. V ) | 
						
							| 25 | 1 2 3 6 4 5 8 12 14 15 16 24 21 | hgmapvs |  |-  ( ph -> ( S ` ( k .x. t ) ) = ( ( G ` k ) .xb ( S ` t ) ) ) | 
						
							| 26 | 23 20 25 | 3eqtr3d |  |-  ( ph -> ( z .xb ( S ` t ) ) = ( ( G ` k ) .xb ( S ` t ) ) ) | 
						
							| 27 | 1 8 16 | lcdlvec |  |-  ( ph -> C e. LVec ) | 
						
							| 28 | 1 2 4 5 8 10 11 15 16 21 | hgmapdcl |  |-  ( ph -> ( G ` k ) e. A ) | 
						
							| 29 | 1 2 3 8 9 14 16 24 | hdmapcl |  |-  ( ph -> ( S ` t ) e. D ) | 
						
							| 30 |  | eldifsni |  |-  ( t e. ( V \ { .0. } ) -> t =/= .0. ) | 
						
							| 31 | 18 30 | syl |  |-  ( ph -> t =/= .0. ) | 
						
							| 32 | 1 2 3 7 8 13 14 16 24 | hdmapeq0 |  |-  ( ph -> ( ( S ` t ) = Q <-> t = .0. ) ) | 
						
							| 33 | 32 | necon3bid |  |-  ( ph -> ( ( S ` t ) =/= Q <-> t =/= .0. ) ) | 
						
							| 34 | 31 33 | mpbird |  |-  ( ph -> ( S ` t ) =/= Q ) | 
						
							| 35 | 9 12 10 11 13 27 17 28 29 34 | lvecvscan2 |  |-  ( ph -> ( ( z .xb ( S ` t ) ) = ( ( G ` k ) .xb ( S ` t ) ) <-> z = ( G ` k ) ) ) | 
						
							| 36 | 26 35 | mpbid |  |-  ( ph -> z = ( G ` k ) ) | 
						
							| 37 | 1 2 4 5 15 16 | hgmapfnN |  |-  ( ph -> G Fn B ) | 
						
							| 38 |  | fnfvelrn |  |-  ( ( G Fn B /\ k e. B ) -> ( G ` k ) e. ran G ) | 
						
							| 39 | 37 21 38 | syl2anc |  |-  ( ph -> ( G ` k ) e. ran G ) | 
						
							| 40 | 36 39 | eqeltrd |  |-  ( ph -> z e. ran G ) |