Step |
Hyp |
Ref |
Expression |
1 |
|
hgmaprnlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmaprnlem1.v |
|- V = ( Base ` U ) |
4 |
|
hgmaprnlem1.r |
|- R = ( Scalar ` U ) |
5 |
|
hgmaprnlem1.b |
|- B = ( Base ` R ) |
6 |
|
hgmaprnlem1.t |
|- .x. = ( .s ` U ) |
7 |
|
hgmaprnlem1.o |
|- .0. = ( 0g ` U ) |
8 |
|
hgmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
9 |
|
hgmaprnlem1.d |
|- D = ( Base ` C ) |
10 |
|
hgmaprnlem1.p |
|- P = ( Scalar ` C ) |
11 |
|
hgmaprnlem1.a |
|- A = ( Base ` P ) |
12 |
|
hgmaprnlem1.e |
|- .xb = ( .s ` C ) |
13 |
|
hgmaprnlem1.q |
|- Q = ( 0g ` C ) |
14 |
|
hgmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
15 |
|
hgmaprnlem1.g |
|- G = ( ( HGMap ` K ) ` W ) |
16 |
|
hgmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
hgmaprnlem1.z |
|- ( ph -> z e. A ) |
18 |
|
hgmaprnlem1.t2 |
|- ( ph -> t e. ( V \ { .0. } ) ) |
19 |
|
hgmaprnlem1.s2 |
|- ( ph -> s e. V ) |
20 |
|
hgmaprnlem1.sz |
|- ( ph -> ( S ` s ) = ( z .xb ( S ` t ) ) ) |
21 |
|
hgmaprnlem1.k2 |
|- ( ph -> k e. B ) |
22 |
|
hgmaprnlem1.sk |
|- ( ph -> s = ( k .x. t ) ) |
23 |
22
|
fveq2d |
|- ( ph -> ( S ` s ) = ( S ` ( k .x. t ) ) ) |
24 |
18
|
eldifad |
|- ( ph -> t e. V ) |
25 |
1 2 3 6 4 5 8 12 14 15 16 24 21
|
hgmapvs |
|- ( ph -> ( S ` ( k .x. t ) ) = ( ( G ` k ) .xb ( S ` t ) ) ) |
26 |
23 20 25
|
3eqtr3d |
|- ( ph -> ( z .xb ( S ` t ) ) = ( ( G ` k ) .xb ( S ` t ) ) ) |
27 |
1 8 16
|
lcdlvec |
|- ( ph -> C e. LVec ) |
28 |
1 2 4 5 8 10 11 15 16 21
|
hgmapdcl |
|- ( ph -> ( G ` k ) e. A ) |
29 |
1 2 3 8 9 14 16 24
|
hdmapcl |
|- ( ph -> ( S ` t ) e. D ) |
30 |
|
eldifsni |
|- ( t e. ( V \ { .0. } ) -> t =/= .0. ) |
31 |
18 30
|
syl |
|- ( ph -> t =/= .0. ) |
32 |
1 2 3 7 8 13 14 16 24
|
hdmapeq0 |
|- ( ph -> ( ( S ` t ) = Q <-> t = .0. ) ) |
33 |
32
|
necon3bid |
|- ( ph -> ( ( S ` t ) =/= Q <-> t =/= .0. ) ) |
34 |
31 33
|
mpbird |
|- ( ph -> ( S ` t ) =/= Q ) |
35 |
9 12 10 11 13 27 17 28 29 34
|
lvecvscan2 |
|- ( ph -> ( ( z .xb ( S ` t ) ) = ( ( G ` k ) .xb ( S ` t ) ) <-> z = ( G ` k ) ) ) |
36 |
26 35
|
mpbid |
|- ( ph -> z = ( G ` k ) ) |
37 |
1 2 4 5 15 16
|
hgmapfnN |
|- ( ph -> G Fn B ) |
38 |
|
fnfvelrn |
|- ( ( G Fn B /\ k e. B ) -> ( G ` k ) e. ran G ) |
39 |
37 21 38
|
syl2anc |
|- ( ph -> ( G ` k ) e. ran G ) |
40 |
36 39
|
eqeltrd |
|- ( ph -> z e. ran G ) |