| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmaprnlem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmaprnlem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmaprnlem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hgmaprnlem1.r |  |-  R = ( Scalar ` U ) | 
						
							| 5 |  | hgmaprnlem1.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | hgmaprnlem1.t |  |-  .x. = ( .s ` U ) | 
						
							| 7 |  | hgmaprnlem1.o |  |-  .0. = ( 0g ` U ) | 
						
							| 8 |  | hgmaprnlem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | hgmaprnlem1.d |  |-  D = ( Base ` C ) | 
						
							| 10 |  | hgmaprnlem1.p |  |-  P = ( Scalar ` C ) | 
						
							| 11 |  | hgmaprnlem1.a |  |-  A = ( Base ` P ) | 
						
							| 12 |  | hgmaprnlem1.e |  |-  .xb = ( .s ` C ) | 
						
							| 13 |  | hgmaprnlem1.q |  |-  Q = ( 0g ` C ) | 
						
							| 14 |  | hgmaprnlem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 15 |  | hgmaprnlem1.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 16 |  | hgmaprnlem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hgmaprnlem1.z |  |-  ( ph -> z e. A ) | 
						
							| 18 |  | hgmaprnlem1.t2 |  |-  ( ph -> t e. ( V \ { .0. } ) ) | 
						
							| 19 |  | hgmaprnlem1.s2 |  |-  ( ph -> s e. V ) | 
						
							| 20 |  | hgmaprnlem1.sz |  |-  ( ph -> ( S ` s ) = ( z .xb ( S ` t ) ) ) | 
						
							| 21 |  | hgmaprnlem1.m |  |-  M = ( ( mapd ` K ) ` W ) | 
						
							| 22 |  | hgmaprnlem1.n |  |-  N = ( LSpan ` U ) | 
						
							| 23 |  | hgmaprnlem1.l |  |-  L = ( LSpan ` C ) | 
						
							| 24 | 1 8 16 | lcdlmod |  |-  ( ph -> C e. LMod ) | 
						
							| 25 | 18 | eldifad |  |-  ( ph -> t e. V ) | 
						
							| 26 | 1 2 3 8 9 14 16 25 | hdmapcl |  |-  ( ph -> ( S ` t ) e. D ) | 
						
							| 27 | 10 11 9 12 23 | lspsnvsi |  |-  ( ( C e. LMod /\ z e. A /\ ( S ` t ) e. D ) -> ( L ` { ( z .xb ( S ` t ) ) } ) C_ ( L ` { ( S ` t ) } ) ) | 
						
							| 28 | 24 17 26 27 | syl3anc |  |-  ( ph -> ( L ` { ( z .xb ( S ` t ) ) } ) C_ ( L ` { ( S ` t ) } ) ) | 
						
							| 29 | 1 2 3 22 8 23 21 14 16 19 | hdmap10 |  |-  ( ph -> ( M ` ( N ` { s } ) ) = ( L ` { ( S ` s ) } ) ) | 
						
							| 30 | 20 | sneqd |  |-  ( ph -> { ( S ` s ) } = { ( z .xb ( S ` t ) ) } ) | 
						
							| 31 | 30 | fveq2d |  |-  ( ph -> ( L ` { ( S ` s ) } ) = ( L ` { ( z .xb ( S ` t ) ) } ) ) | 
						
							| 32 | 29 31 | eqtrd |  |-  ( ph -> ( M ` ( N ` { s } ) ) = ( L ` { ( z .xb ( S ` t ) ) } ) ) | 
						
							| 33 | 1 2 3 22 8 23 21 14 16 25 | hdmap10 |  |-  ( ph -> ( M ` ( N ` { t } ) ) = ( L ` { ( S ` t ) } ) ) | 
						
							| 34 | 28 32 33 | 3sstr4d |  |-  ( ph -> ( M ` ( N ` { s } ) ) C_ ( M ` ( N ` { t } ) ) ) | 
						
							| 35 |  | eqid |  |-  ( LSubSp ` U ) = ( LSubSp ` U ) | 
						
							| 36 | 1 2 16 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 37 | 3 35 22 | lspsncl |  |-  ( ( U e. LMod /\ s e. V ) -> ( N ` { s } ) e. ( LSubSp ` U ) ) | 
						
							| 38 | 36 19 37 | syl2anc |  |-  ( ph -> ( N ` { s } ) e. ( LSubSp ` U ) ) | 
						
							| 39 | 3 35 22 | lspsncl |  |-  ( ( U e. LMod /\ t e. V ) -> ( N ` { t } ) e. ( LSubSp ` U ) ) | 
						
							| 40 | 36 25 39 | syl2anc |  |-  ( ph -> ( N ` { t } ) e. ( LSubSp ` U ) ) | 
						
							| 41 | 1 2 35 21 16 38 40 | mapdord |  |-  ( ph -> ( ( M ` ( N ` { s } ) ) C_ ( M ` ( N ` { t } ) ) <-> ( N ` { s } ) C_ ( N ` { t } ) ) ) | 
						
							| 42 | 34 41 | mpbid |  |-  ( ph -> ( N ` { s } ) C_ ( N ` { t } ) ) |