Metamath Proof Explorer


Theorem hgmaprnlem2N

Description: Lemma for hgmaprnN . Part 15 of Baer p. 50 line 20. We only require a subset relation, rather than equality, so that the case of zero z is taken care of automatically. (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h H = LHyp K
hgmaprnlem1.u U = DVecH K W
hgmaprnlem1.v V = Base U
hgmaprnlem1.r R = Scalar U
hgmaprnlem1.b B = Base R
hgmaprnlem1.t · ˙ = U
hgmaprnlem1.o 0 ˙ = 0 U
hgmaprnlem1.c C = LCDual K W
hgmaprnlem1.d D = Base C
hgmaprnlem1.p P = Scalar C
hgmaprnlem1.a A = Base P
hgmaprnlem1.e ˙ = C
hgmaprnlem1.q Q = 0 C
hgmaprnlem1.s S = HDMap K W
hgmaprnlem1.g G = HGMap K W
hgmaprnlem1.k φ K HL W H
hgmaprnlem1.z φ z A
hgmaprnlem1.t2 φ t V 0 ˙
hgmaprnlem1.s2 φ s V
hgmaprnlem1.sz φ S s = z ˙ S t
hgmaprnlem1.m M = mapd K W
hgmaprnlem1.n N = LSpan U
hgmaprnlem1.l L = LSpan C
Assertion hgmaprnlem2N φ N s N t

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h H = LHyp K
2 hgmaprnlem1.u U = DVecH K W
3 hgmaprnlem1.v V = Base U
4 hgmaprnlem1.r R = Scalar U
5 hgmaprnlem1.b B = Base R
6 hgmaprnlem1.t · ˙ = U
7 hgmaprnlem1.o 0 ˙ = 0 U
8 hgmaprnlem1.c C = LCDual K W
9 hgmaprnlem1.d D = Base C
10 hgmaprnlem1.p P = Scalar C
11 hgmaprnlem1.a A = Base P
12 hgmaprnlem1.e ˙ = C
13 hgmaprnlem1.q Q = 0 C
14 hgmaprnlem1.s S = HDMap K W
15 hgmaprnlem1.g G = HGMap K W
16 hgmaprnlem1.k φ K HL W H
17 hgmaprnlem1.z φ z A
18 hgmaprnlem1.t2 φ t V 0 ˙
19 hgmaprnlem1.s2 φ s V
20 hgmaprnlem1.sz φ S s = z ˙ S t
21 hgmaprnlem1.m M = mapd K W
22 hgmaprnlem1.n N = LSpan U
23 hgmaprnlem1.l L = LSpan C
24 1 8 16 lcdlmod φ C LMod
25 18 eldifad φ t V
26 1 2 3 8 9 14 16 25 hdmapcl φ S t D
27 10 11 9 12 23 lspsnvsi C LMod z A S t D L z ˙ S t L S t
28 24 17 26 27 syl3anc φ L z ˙ S t L S t
29 1 2 3 22 8 23 21 14 16 19 hdmap10 φ M N s = L S s
30 20 sneqd φ S s = z ˙ S t
31 30 fveq2d φ L S s = L z ˙ S t
32 29 31 eqtrd φ M N s = L z ˙ S t
33 1 2 3 22 8 23 21 14 16 25 hdmap10 φ M N t = L S t
34 28 32 33 3sstr4d φ M N s M N t
35 eqid LSubSp U = LSubSp U
36 1 2 16 dvhlmod φ U LMod
37 3 35 22 lspsncl U LMod s V N s LSubSp U
38 36 19 37 syl2anc φ N s LSubSp U
39 3 35 22 lspsncl U LMod t V N t LSubSp U
40 36 25 39 syl2anc φ N t LSubSp U
41 1 2 35 21 16 38 40 mapdord φ M N s M N t N s N t
42 34 41 mpbid φ N s N t