Description: Lemma for hgmaprnN . Eliminate k . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hgmaprnlem1.h | |
|
hgmaprnlem1.u | |
||
hgmaprnlem1.v | |
||
hgmaprnlem1.r | |
||
hgmaprnlem1.b | |
||
hgmaprnlem1.t | |
||
hgmaprnlem1.o | |
||
hgmaprnlem1.c | |
||
hgmaprnlem1.d | |
||
hgmaprnlem1.p | |
||
hgmaprnlem1.a | |
||
hgmaprnlem1.e | |
||
hgmaprnlem1.q | |
||
hgmaprnlem1.s | |
||
hgmaprnlem1.g | |
||
hgmaprnlem1.k | |
||
hgmaprnlem1.z | |
||
hgmaprnlem1.t2 | |
||
hgmaprnlem1.s2 | |
||
hgmaprnlem1.sz | |
||
hgmaprnlem1.m | |
||
hgmaprnlem1.n | |
||
hgmaprnlem1.l | |
||
Assertion | hgmaprnlem3N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmaprnlem1.h | |
|
2 | hgmaprnlem1.u | |
|
3 | hgmaprnlem1.v | |
|
4 | hgmaprnlem1.r | |
|
5 | hgmaprnlem1.b | |
|
6 | hgmaprnlem1.t | |
|
7 | hgmaprnlem1.o | |
|
8 | hgmaprnlem1.c | |
|
9 | hgmaprnlem1.d | |
|
10 | hgmaprnlem1.p | |
|
11 | hgmaprnlem1.a | |
|
12 | hgmaprnlem1.e | |
|
13 | hgmaprnlem1.q | |
|
14 | hgmaprnlem1.s | |
|
15 | hgmaprnlem1.g | |
|
16 | hgmaprnlem1.k | |
|
17 | hgmaprnlem1.z | |
|
18 | hgmaprnlem1.t2 | |
|
19 | hgmaprnlem1.s2 | |
|
20 | hgmaprnlem1.sz | |
|
21 | hgmaprnlem1.m | |
|
22 | hgmaprnlem1.n | |
|
23 | hgmaprnlem1.l | |
|
24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | hgmaprnlem2N | |
25 | 1 2 16 | dvhlmod | |
26 | 18 | eldifad | |
27 | 3 4 5 6 22 25 19 26 | lspsnss2 | |
28 | 24 27 | mpbid | |
29 | 16 | 3ad2ant1 | |
30 | 17 | 3ad2ant1 | |
31 | 18 | 3ad2ant1 | |
32 | 19 | 3ad2ant1 | |
33 | 20 | 3ad2ant1 | |
34 | simp2 | |
|
35 | simp3 | |
|
36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 29 30 31 32 33 34 35 | hgmaprnlem1N | |
37 | 36 | rexlimdv3a | |
38 | 28 37 | mpd | |