Metamath Proof Explorer


Theorem hgmaprnlem3N

Description: Lemma for hgmaprnN . Eliminate k . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h H=LHypK
hgmaprnlem1.u U=DVecHKW
hgmaprnlem1.v V=BaseU
hgmaprnlem1.r R=ScalarU
hgmaprnlem1.b B=BaseR
hgmaprnlem1.t ·˙=U
hgmaprnlem1.o 0˙=0U
hgmaprnlem1.c C=LCDualKW
hgmaprnlem1.d D=BaseC
hgmaprnlem1.p P=ScalarC
hgmaprnlem1.a A=BaseP
hgmaprnlem1.e ˙=C
hgmaprnlem1.q Q=0C
hgmaprnlem1.s S=HDMapKW
hgmaprnlem1.g G=HGMapKW
hgmaprnlem1.k φKHLWH
hgmaprnlem1.z φzA
hgmaprnlem1.t2 φtV0˙
hgmaprnlem1.s2 φsV
hgmaprnlem1.sz φSs=z˙St
hgmaprnlem1.m M=mapdKW
hgmaprnlem1.n N=LSpanU
hgmaprnlem1.l L=LSpanC
Assertion hgmaprnlem3N φzranG

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h H=LHypK
2 hgmaprnlem1.u U=DVecHKW
3 hgmaprnlem1.v V=BaseU
4 hgmaprnlem1.r R=ScalarU
5 hgmaprnlem1.b B=BaseR
6 hgmaprnlem1.t ·˙=U
7 hgmaprnlem1.o 0˙=0U
8 hgmaprnlem1.c C=LCDualKW
9 hgmaprnlem1.d D=BaseC
10 hgmaprnlem1.p P=ScalarC
11 hgmaprnlem1.a A=BaseP
12 hgmaprnlem1.e ˙=C
13 hgmaprnlem1.q Q=0C
14 hgmaprnlem1.s S=HDMapKW
15 hgmaprnlem1.g G=HGMapKW
16 hgmaprnlem1.k φKHLWH
17 hgmaprnlem1.z φzA
18 hgmaprnlem1.t2 φtV0˙
19 hgmaprnlem1.s2 φsV
20 hgmaprnlem1.sz φSs=z˙St
21 hgmaprnlem1.m M=mapdKW
22 hgmaprnlem1.n N=LSpanU
23 hgmaprnlem1.l L=LSpanC
24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 hgmaprnlem2N φNsNt
25 1 2 16 dvhlmod φULMod
26 18 eldifad φtV
27 3 4 5 6 22 25 19 26 lspsnss2 φNsNtkBs=k·˙t
28 24 27 mpbid φkBs=k·˙t
29 16 3ad2ant1 φkBs=k·˙tKHLWH
30 17 3ad2ant1 φkBs=k·˙tzA
31 18 3ad2ant1 φkBs=k·˙ttV0˙
32 19 3ad2ant1 φkBs=k·˙tsV
33 20 3ad2ant1 φkBs=k·˙tSs=z˙St
34 simp2 φkBs=k·˙tkB
35 simp3 φkBs=k·˙ts=k·˙t
36 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 29 30 31 32 33 34 35 hgmaprnlem1N φkBs=k·˙tzranG
37 36 rexlimdv3a φkBs=k·˙tzranG
38 28 37 mpd φzranG