| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmaprnlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmaprnlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmaprnlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hgmaprnlem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | hgmaprnlem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | hgmaprnlem1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 7 |  | hgmaprnlem1.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 8 |  | hgmaprnlem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hgmaprnlem1.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | hgmaprnlem1.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 11 |  | hgmaprnlem1.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 12 |  | hgmaprnlem1.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 13 |  | hgmaprnlem1.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 14 |  | hgmaprnlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hgmaprnlem1.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hgmaprnlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hgmaprnlem1.z | ⊢ ( 𝜑  →  𝑧  ∈  𝐴 ) | 
						
							| 18 |  | hgmaprnlem1.t2 | ⊢ ( 𝜑  →  𝑡  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 |  | hgmaprnlem1.s2 | ⊢ ( 𝜑  →  𝑠  ∈  𝑉 ) | 
						
							| 20 |  | hgmaprnlem1.sz | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) ) | 
						
							| 21 |  | hgmaprnlem1.m | ⊢ 𝑀  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 22 |  | hgmaprnlem1.n | ⊢ 𝑁  =  ( LSpan ‘ 𝑈 ) | 
						
							| 23 |  | hgmaprnlem1.l | ⊢ 𝐿  =  ( LSpan ‘ 𝐶 ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | hgmaprnlem2N | ⊢ ( 𝜑  →  ( 𝑁 ‘ { 𝑠 } )  ⊆  ( 𝑁 ‘ { 𝑡 } ) ) | 
						
							| 25 | 1 2 16 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 26 | 18 | eldifad | ⊢ ( 𝜑  →  𝑡  ∈  𝑉 ) | 
						
							| 27 | 3 4 5 6 22 25 19 26 | lspsnss2 | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ { 𝑠 } )  ⊆  ( 𝑁 ‘ { 𝑡 } )  ↔  ∃ 𝑘  ∈  𝐵 𝑠  =  ( 𝑘  ·  𝑡 ) ) ) | 
						
							| 28 | 24 27 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝐵 𝑠  =  ( 𝑘  ·  𝑡 ) ) | 
						
							| 29 | 16 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵  ∧  𝑠  =  ( 𝑘  ·  𝑡 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 30 | 17 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵  ∧  𝑠  =  ( 𝑘  ·  𝑡 ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 31 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵  ∧  𝑠  =  ( 𝑘  ·  𝑡 ) )  →  𝑡  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 32 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵  ∧  𝑠  =  ( 𝑘  ·  𝑡 ) )  →  𝑠  ∈  𝑉 ) | 
						
							| 33 | 20 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵  ∧  𝑠  =  ( 𝑘  ·  𝑡 ) )  →  ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) ) | 
						
							| 34 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵  ∧  𝑠  =  ( 𝑘  ·  𝑡 ) )  →  𝑘  ∈  𝐵 ) | 
						
							| 35 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵  ∧  𝑠  =  ( 𝑘  ·  𝑡 ) )  →  𝑠  =  ( 𝑘  ·  𝑡 ) ) | 
						
							| 36 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 29 30 31 32 33 34 35 | hgmaprnlem1N | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐵  ∧  𝑠  =  ( 𝑘  ·  𝑡 ) )  →  𝑧  ∈  ran  𝐺 ) | 
						
							| 37 | 36 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑘  ∈  𝐵 𝑠  =  ( 𝑘  ·  𝑡 )  →  𝑧  ∈  ran  𝐺 ) ) | 
						
							| 38 | 28 37 | mpd | ⊢ ( 𝜑  →  𝑧  ∈  ran  𝐺 ) |