| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmaprnlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmaprnlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmaprnlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hgmaprnlem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | hgmaprnlem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | hgmaprnlem1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 7 |  | hgmaprnlem1.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 8 |  | hgmaprnlem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hgmaprnlem1.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | hgmaprnlem1.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 11 |  | hgmaprnlem1.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 12 |  | hgmaprnlem1.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 13 |  | hgmaprnlem1.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 14 |  | hgmaprnlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hgmaprnlem1.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hgmaprnlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hgmaprnlem1.z | ⊢ ( 𝜑  →  𝑧  ∈  𝐴 ) | 
						
							| 18 |  | hgmaprnlem1.t2 | ⊢ ( 𝜑  →  𝑡  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 19 | 1 8 16 | lcdlmod | ⊢ ( 𝜑  →  𝐶  ∈  LMod ) | 
						
							| 20 | 18 | eldifad | ⊢ ( 𝜑  →  𝑡  ∈  𝑉 ) | 
						
							| 21 | 1 2 3 8 9 14 16 20 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑡 )  ∈  𝐷 ) | 
						
							| 22 | 9 10 12 11 | lmodvscl | ⊢ ( ( 𝐶  ∈  LMod  ∧  𝑧  ∈  𝐴  ∧  ( 𝑆 ‘ 𝑡 )  ∈  𝐷 )  →  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) )  ∈  𝐷 ) | 
						
							| 23 | 19 17 21 22 | syl3anc | ⊢ ( 𝜑  →  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) )  ∈  𝐷 ) | 
						
							| 24 | 1 8 9 14 16 | hdmaprnN | ⊢ ( 𝜑  →  ran  𝑆  =  𝐷 ) | 
						
							| 25 | 23 24 | eleqtrrd | ⊢ ( 𝜑  →  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) )  ∈  ran  𝑆 ) | 
						
							| 26 | 1 2 3 14 16 | hdmapfnN | ⊢ ( 𝜑  →  𝑆  Fn  𝑉 ) | 
						
							| 27 |  | fvelrnb | ⊢ ( 𝑆  Fn  𝑉  →  ( ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) )  ∈  ran  𝑆  ↔  ∃ 𝑠  ∈  𝑉 ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) ) ) | 
						
							| 28 | 26 27 | syl | ⊢ ( 𝜑  →  ( ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) )  ∈  ran  𝑆  ↔  ∃ 𝑠  ∈  𝑉 ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) ) ) | 
						
							| 29 | 25 28 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑠  ∈  𝑉 ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) ) | 
						
							| 30 | 16 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 31 | 17 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 32 | 18 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) )  →  𝑡  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 33 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) )  →  𝑠  ∈  𝑉 ) | 
						
							| 34 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) )  →  ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) ) | 
						
							| 35 |  | eqid | ⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 36 |  | eqid | ⊢ ( LSpan ‘ 𝑈 )  =  ( LSpan ‘ 𝑈 ) | 
						
							| 37 |  | eqid | ⊢ ( LSpan ‘ 𝐶 )  =  ( LSpan ‘ 𝐶 ) | 
						
							| 38 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31 32 33 34 35 36 37 | hgmaprnlem3N | ⊢ ( ( 𝜑  ∧  𝑠  ∈  𝑉  ∧  ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) ) )  →  𝑧  ∈  ran  𝐺 ) | 
						
							| 39 | 38 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑠  ∈  𝑉 ( 𝑆 ‘ 𝑠 )  =  ( 𝑧  ∙  ( 𝑆 ‘ 𝑡 ) )  →  𝑧  ∈  ran  𝐺 ) ) | 
						
							| 40 | 29 39 | mpd | ⊢ ( 𝜑  →  𝑧  ∈  ran  𝐺 ) |