Step |
Hyp |
Ref |
Expression |
1 |
|
hgmaprnlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hgmaprnlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hgmaprnlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hgmaprnlem1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
5 |
|
hgmaprnlem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
hgmaprnlem1.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
hgmaprnlem1.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
8 |
|
hgmaprnlem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hgmaprnlem1.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
10 |
|
hgmaprnlem1.p |
⊢ 𝑃 = ( Scalar ‘ 𝐶 ) |
11 |
|
hgmaprnlem1.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
12 |
|
hgmaprnlem1.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
13 |
|
hgmaprnlem1.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
14 |
|
hgmaprnlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
hgmaprnlem1.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
hgmaprnlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
hgmaprnlem1.z |
⊢ ( 𝜑 → 𝑧 ∈ 𝐴 ) |
18 |
|
hgmaprnlem1.t2 |
⊢ ( 𝜑 → 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ) |
19 |
1 8 16
|
lcdlmod |
⊢ ( 𝜑 → 𝐶 ∈ LMod ) |
20 |
18
|
eldifad |
⊢ ( 𝜑 → 𝑡 ∈ 𝑉 ) |
21 |
1 2 3 8 9 14 16 20
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑡 ) ∈ 𝐷 ) |
22 |
9 10 12 11
|
lmodvscl |
⊢ ( ( 𝐶 ∈ LMod ∧ 𝑧 ∈ 𝐴 ∧ ( 𝑆 ‘ 𝑡 ) ∈ 𝐷 ) → ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ∈ 𝐷 ) |
23 |
19 17 21 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ∈ 𝐷 ) |
24 |
1 8 9 14 16
|
hdmaprnN |
⊢ ( 𝜑 → ran 𝑆 = 𝐷 ) |
25 |
23 24
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ∈ ran 𝑆 ) |
26 |
1 2 3 14 16
|
hdmapfnN |
⊢ ( 𝜑 → 𝑆 Fn 𝑉 ) |
27 |
|
fvelrnb |
⊢ ( 𝑆 Fn 𝑉 → ( ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ∈ ran 𝑆 ↔ ∃ 𝑠 ∈ 𝑉 ( 𝑆 ‘ 𝑠 ) = ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ) ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ( ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ∈ ran 𝑆 ↔ ∃ 𝑠 ∈ 𝑉 ( 𝑆 ‘ 𝑠 ) = ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ) ) |
29 |
25 28
|
mpbid |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝑉 ( 𝑆 ‘ 𝑠 ) = ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ) |
30 |
16
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑠 ) = ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
31 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑠 ) = ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ) → 𝑧 ∈ 𝐴 ) |
32 |
18
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑠 ) = ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ) → 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ) |
33 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑠 ) = ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ) → 𝑠 ∈ 𝑉 ) |
34 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑠 ) = ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ) → ( 𝑆 ‘ 𝑠 ) = ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ) |
35 |
|
eqid |
⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
36 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
37 |
|
eqid |
⊢ ( LSpan ‘ 𝐶 ) = ( LSpan ‘ 𝐶 ) |
38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31 32 33 34 35 36 37
|
hgmaprnlem3N |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝑉 ∧ ( 𝑆 ‘ 𝑠 ) = ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) ) → 𝑧 ∈ ran 𝐺 ) |
39 |
38
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ 𝑉 ( 𝑆 ‘ 𝑠 ) = ( 𝑧 ∙ ( 𝑆 ‘ 𝑡 ) ) → 𝑧 ∈ ran 𝐺 ) ) |
40 |
29 39
|
mpd |
⊢ ( 𝜑 → 𝑧 ∈ ran 𝐺 ) |