| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgmaprnlem1.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hgmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hgmaprnlem1.v |
|- V = ( Base ` U ) |
| 4 |
|
hgmaprnlem1.r |
|- R = ( Scalar ` U ) |
| 5 |
|
hgmaprnlem1.b |
|- B = ( Base ` R ) |
| 6 |
|
hgmaprnlem1.t |
|- .x. = ( .s ` U ) |
| 7 |
|
hgmaprnlem1.o |
|- .0. = ( 0g ` U ) |
| 8 |
|
hgmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
| 9 |
|
hgmaprnlem1.d |
|- D = ( Base ` C ) |
| 10 |
|
hgmaprnlem1.p |
|- P = ( Scalar ` C ) |
| 11 |
|
hgmaprnlem1.a |
|- A = ( Base ` P ) |
| 12 |
|
hgmaprnlem1.e |
|- .xb = ( .s ` C ) |
| 13 |
|
hgmaprnlem1.q |
|- Q = ( 0g ` C ) |
| 14 |
|
hgmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
| 15 |
|
hgmaprnlem1.g |
|- G = ( ( HGMap ` K ) ` W ) |
| 16 |
|
hgmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 17 |
|
hgmaprnlem1.z |
|- ( ph -> z e. A ) |
| 18 |
|
hgmaprnlem1.t2 |
|- ( ph -> t e. ( V \ { .0. } ) ) |
| 19 |
1 8 16
|
lcdlmod |
|- ( ph -> C e. LMod ) |
| 20 |
18
|
eldifad |
|- ( ph -> t e. V ) |
| 21 |
1 2 3 8 9 14 16 20
|
hdmapcl |
|- ( ph -> ( S ` t ) e. D ) |
| 22 |
9 10 12 11
|
lmodvscl |
|- ( ( C e. LMod /\ z e. A /\ ( S ` t ) e. D ) -> ( z .xb ( S ` t ) ) e. D ) |
| 23 |
19 17 21 22
|
syl3anc |
|- ( ph -> ( z .xb ( S ` t ) ) e. D ) |
| 24 |
1 8 9 14 16
|
hdmaprnN |
|- ( ph -> ran S = D ) |
| 25 |
23 24
|
eleqtrrd |
|- ( ph -> ( z .xb ( S ` t ) ) e. ran S ) |
| 26 |
1 2 3 14 16
|
hdmapfnN |
|- ( ph -> S Fn V ) |
| 27 |
|
fvelrnb |
|- ( S Fn V -> ( ( z .xb ( S ` t ) ) e. ran S <-> E. s e. V ( S ` s ) = ( z .xb ( S ` t ) ) ) ) |
| 28 |
26 27
|
syl |
|- ( ph -> ( ( z .xb ( S ` t ) ) e. ran S <-> E. s e. V ( S ` s ) = ( z .xb ( S ` t ) ) ) ) |
| 29 |
25 28
|
mpbid |
|- ( ph -> E. s e. V ( S ` s ) = ( z .xb ( S ` t ) ) ) |
| 30 |
16
|
3ad2ant1 |
|- ( ( ph /\ s e. V /\ ( S ` s ) = ( z .xb ( S ` t ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 31 |
17
|
3ad2ant1 |
|- ( ( ph /\ s e. V /\ ( S ` s ) = ( z .xb ( S ` t ) ) ) -> z e. A ) |
| 32 |
18
|
3ad2ant1 |
|- ( ( ph /\ s e. V /\ ( S ` s ) = ( z .xb ( S ` t ) ) ) -> t e. ( V \ { .0. } ) ) |
| 33 |
|
simp2 |
|- ( ( ph /\ s e. V /\ ( S ` s ) = ( z .xb ( S ` t ) ) ) -> s e. V ) |
| 34 |
|
simp3 |
|- ( ( ph /\ s e. V /\ ( S ` s ) = ( z .xb ( S ` t ) ) ) -> ( S ` s ) = ( z .xb ( S ` t ) ) ) |
| 35 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
| 36 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
| 37 |
|
eqid |
|- ( LSpan ` C ) = ( LSpan ` C ) |
| 38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 30 31 32 33 34 35 36 37
|
hgmaprnlem3N |
|- ( ( ph /\ s e. V /\ ( S ` s ) = ( z .xb ( S ` t ) ) ) -> z e. ran G ) |
| 39 |
38
|
rexlimdv3a |
|- ( ph -> ( E. s e. V ( S ` s ) = ( z .xb ( S ` t ) ) -> z e. ran G ) ) |
| 40 |
29 39
|
mpd |
|- ( ph -> z e. ran G ) |