| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmaprnlem1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmaprnlem1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmaprnlem1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hgmaprnlem1.r |  |-  R = ( Scalar ` U ) | 
						
							| 5 |  | hgmaprnlem1.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | hgmaprnlem1.t |  |-  .x. = ( .s ` U ) | 
						
							| 7 |  | hgmaprnlem1.o |  |-  .0. = ( 0g ` U ) | 
						
							| 8 |  | hgmaprnlem1.c |  |-  C = ( ( LCDual ` K ) ` W ) | 
						
							| 9 |  | hgmaprnlem1.d |  |-  D = ( Base ` C ) | 
						
							| 10 |  | hgmaprnlem1.p |  |-  P = ( Scalar ` C ) | 
						
							| 11 |  | hgmaprnlem1.a |  |-  A = ( Base ` P ) | 
						
							| 12 |  | hgmaprnlem1.e |  |-  .xb = ( .s ` C ) | 
						
							| 13 |  | hgmaprnlem1.q |  |-  Q = ( 0g ` C ) | 
						
							| 14 |  | hgmaprnlem1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 15 |  | hgmaprnlem1.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 16 |  | hgmaprnlem1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 17 |  | hgmaprnlem1.z |  |-  ( ph -> z e. A ) | 
						
							| 18 | 1 2 3 7 16 | dvh1dim |  |-  ( ph -> E. t e. V t =/= .0. ) | 
						
							| 19 |  | eldifsn |  |-  ( t e. ( V \ { .0. } ) <-> ( t e. V /\ t =/= .0. ) ) | 
						
							| 20 | 16 | adantr |  |-  ( ( ph /\ t e. ( V \ { .0. } ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 21 | 17 | adantr |  |-  ( ( ph /\ t e. ( V \ { .0. } ) ) -> z e. A ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ t e. ( V \ { .0. } ) ) -> t e. ( V \ { .0. } ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 21 22 | hgmaprnlem4N |  |-  ( ( ph /\ t e. ( V \ { .0. } ) ) -> z e. ran G ) | 
						
							| 24 | 19 23 | sylan2br |  |-  ( ( ph /\ ( t e. V /\ t =/= .0. ) ) -> z e. ran G ) | 
						
							| 25 | 18 24 | rexlimddv |  |-  ( ph -> z e. ran G ) |