Metamath Proof Explorer


Theorem hgmaprnlem5N

Description: Lemma for hgmaprnN . Eliminate t . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h
|- H = ( LHyp ` K )
hgmaprnlem1.u
|- U = ( ( DVecH ` K ) ` W )
hgmaprnlem1.v
|- V = ( Base ` U )
hgmaprnlem1.r
|- R = ( Scalar ` U )
hgmaprnlem1.b
|- B = ( Base ` R )
hgmaprnlem1.t
|- .x. = ( .s ` U )
hgmaprnlem1.o
|- .0. = ( 0g ` U )
hgmaprnlem1.c
|- C = ( ( LCDual ` K ) ` W )
hgmaprnlem1.d
|- D = ( Base ` C )
hgmaprnlem1.p
|- P = ( Scalar ` C )
hgmaprnlem1.a
|- A = ( Base ` P )
hgmaprnlem1.e
|- .xb = ( .s ` C )
hgmaprnlem1.q
|- Q = ( 0g ` C )
hgmaprnlem1.s
|- S = ( ( HDMap ` K ) ` W )
hgmaprnlem1.g
|- G = ( ( HGMap ` K ) ` W )
hgmaprnlem1.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hgmaprnlem1.z
|- ( ph -> z e. A )
Assertion hgmaprnlem5N
|- ( ph -> z e. ran G )

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h
 |-  H = ( LHyp ` K )
2 hgmaprnlem1.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hgmaprnlem1.v
 |-  V = ( Base ` U )
4 hgmaprnlem1.r
 |-  R = ( Scalar ` U )
5 hgmaprnlem1.b
 |-  B = ( Base ` R )
6 hgmaprnlem1.t
 |-  .x. = ( .s ` U )
7 hgmaprnlem1.o
 |-  .0. = ( 0g ` U )
8 hgmaprnlem1.c
 |-  C = ( ( LCDual ` K ) ` W )
9 hgmaprnlem1.d
 |-  D = ( Base ` C )
10 hgmaprnlem1.p
 |-  P = ( Scalar ` C )
11 hgmaprnlem1.a
 |-  A = ( Base ` P )
12 hgmaprnlem1.e
 |-  .xb = ( .s ` C )
13 hgmaprnlem1.q
 |-  Q = ( 0g ` C )
14 hgmaprnlem1.s
 |-  S = ( ( HDMap ` K ) ` W )
15 hgmaprnlem1.g
 |-  G = ( ( HGMap ` K ) ` W )
16 hgmaprnlem1.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
17 hgmaprnlem1.z
 |-  ( ph -> z e. A )
18 1 2 3 7 16 dvh1dim
 |-  ( ph -> E. t e. V t =/= .0. )
19 eldifsn
 |-  ( t e. ( V \ { .0. } ) <-> ( t e. V /\ t =/= .0. ) )
20 16 adantr
 |-  ( ( ph /\ t e. ( V \ { .0. } ) ) -> ( K e. HL /\ W e. H ) )
21 17 adantr
 |-  ( ( ph /\ t e. ( V \ { .0. } ) ) -> z e. A )
22 simpr
 |-  ( ( ph /\ t e. ( V \ { .0. } ) ) -> t e. ( V \ { .0. } ) )
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 21 22 hgmaprnlem4N
 |-  ( ( ph /\ t e. ( V \ { .0. } ) ) -> z e. ran G )
24 19 23 sylan2br
 |-  ( ( ph /\ ( t e. V /\ t =/= .0. ) ) -> z e. ran G )
25 18 24 rexlimddv
 |-  ( ph -> z e. ran G )