Step |
Hyp |
Ref |
Expression |
1 |
|
hgmaprnlem1.h |
|- H = ( LHyp ` K ) |
2 |
|
hgmaprnlem1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hgmaprnlem1.v |
|- V = ( Base ` U ) |
4 |
|
hgmaprnlem1.r |
|- R = ( Scalar ` U ) |
5 |
|
hgmaprnlem1.b |
|- B = ( Base ` R ) |
6 |
|
hgmaprnlem1.t |
|- .x. = ( .s ` U ) |
7 |
|
hgmaprnlem1.o |
|- .0. = ( 0g ` U ) |
8 |
|
hgmaprnlem1.c |
|- C = ( ( LCDual ` K ) ` W ) |
9 |
|
hgmaprnlem1.d |
|- D = ( Base ` C ) |
10 |
|
hgmaprnlem1.p |
|- P = ( Scalar ` C ) |
11 |
|
hgmaprnlem1.a |
|- A = ( Base ` P ) |
12 |
|
hgmaprnlem1.e |
|- .xb = ( .s ` C ) |
13 |
|
hgmaprnlem1.q |
|- Q = ( 0g ` C ) |
14 |
|
hgmaprnlem1.s |
|- S = ( ( HDMap ` K ) ` W ) |
15 |
|
hgmaprnlem1.g |
|- G = ( ( HGMap ` K ) ` W ) |
16 |
|
hgmaprnlem1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
17 |
|
hgmaprnlem1.z |
|- ( ph -> z e. A ) |
18 |
1 2 3 7 16
|
dvh1dim |
|- ( ph -> E. t e. V t =/= .0. ) |
19 |
|
eldifsn |
|- ( t e. ( V \ { .0. } ) <-> ( t e. V /\ t =/= .0. ) ) |
20 |
16
|
adantr |
|- ( ( ph /\ t e. ( V \ { .0. } ) ) -> ( K e. HL /\ W e. H ) ) |
21 |
17
|
adantr |
|- ( ( ph /\ t e. ( V \ { .0. } ) ) -> z e. A ) |
22 |
|
simpr |
|- ( ( ph /\ t e. ( V \ { .0. } ) ) -> t e. ( V \ { .0. } ) ) |
23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 21 22
|
hgmaprnlem4N |
|- ( ( ph /\ t e. ( V \ { .0. } ) ) -> z e. ran G ) |
24 |
19 23
|
sylan2br |
|- ( ( ph /\ ( t e. V /\ t =/= .0. ) ) -> z e. ran G ) |
25 |
18 24
|
rexlimddv |
|- ( ph -> z e. ran G ) |