Metamath Proof Explorer


Theorem hgmaprnlem5N

Description: Lemma for hgmaprnN . Eliminate t . (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprnlem1.h H=LHypK
hgmaprnlem1.u U=DVecHKW
hgmaprnlem1.v V=BaseU
hgmaprnlem1.r R=ScalarU
hgmaprnlem1.b B=BaseR
hgmaprnlem1.t ·˙=U
hgmaprnlem1.o 0˙=0U
hgmaprnlem1.c C=LCDualKW
hgmaprnlem1.d D=BaseC
hgmaprnlem1.p P=ScalarC
hgmaprnlem1.a A=BaseP
hgmaprnlem1.e ˙=C
hgmaprnlem1.q Q=0C
hgmaprnlem1.s S=HDMapKW
hgmaprnlem1.g G=HGMapKW
hgmaprnlem1.k φKHLWH
hgmaprnlem1.z φzA
Assertion hgmaprnlem5N φzranG

Proof

Step Hyp Ref Expression
1 hgmaprnlem1.h H=LHypK
2 hgmaprnlem1.u U=DVecHKW
3 hgmaprnlem1.v V=BaseU
4 hgmaprnlem1.r R=ScalarU
5 hgmaprnlem1.b B=BaseR
6 hgmaprnlem1.t ·˙=U
7 hgmaprnlem1.o 0˙=0U
8 hgmaprnlem1.c C=LCDualKW
9 hgmaprnlem1.d D=BaseC
10 hgmaprnlem1.p P=ScalarC
11 hgmaprnlem1.a A=BaseP
12 hgmaprnlem1.e ˙=C
13 hgmaprnlem1.q Q=0C
14 hgmaprnlem1.s S=HDMapKW
15 hgmaprnlem1.g G=HGMapKW
16 hgmaprnlem1.k φKHLWH
17 hgmaprnlem1.z φzA
18 1 2 3 7 16 dvh1dim φtVt0˙
19 eldifsn tV0˙tVt0˙
20 16 adantr φtV0˙KHLWH
21 17 adantr φtV0˙zA
22 simpr φtV0˙tV0˙
23 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 21 22 hgmaprnlem4N φtV0˙zranG
24 19 23 sylan2br φtVt0˙zranG
25 18 24 rexlimddv φzranG