| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmaprnlem1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmaprnlem1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmaprnlem1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hgmaprnlem1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | hgmaprnlem1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | hgmaprnlem1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 7 |  | hgmaprnlem1.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 8 |  | hgmaprnlem1.c | ⊢ 𝐶  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hgmaprnlem1.d | ⊢ 𝐷  =  ( Base ‘ 𝐶 ) | 
						
							| 10 |  | hgmaprnlem1.p | ⊢ 𝑃  =  ( Scalar ‘ 𝐶 ) | 
						
							| 11 |  | hgmaprnlem1.a | ⊢ 𝐴  =  ( Base ‘ 𝑃 ) | 
						
							| 12 |  | hgmaprnlem1.e | ⊢  ∙   =  (  ·𝑠  ‘ 𝐶 ) | 
						
							| 13 |  | hgmaprnlem1.q | ⊢ 𝑄  =  ( 0g ‘ 𝐶 ) | 
						
							| 14 |  | hgmaprnlem1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | hgmaprnlem1.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 |  | hgmaprnlem1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 17 |  | hgmaprnlem1.z | ⊢ ( 𝜑  →  𝑧  ∈  𝐴 ) | 
						
							| 18 | 1 2 3 7 16 | dvh1dim | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  𝑉 𝑡  ≠   0  ) | 
						
							| 19 |  | eldifsn | ⊢ ( 𝑡  ∈  ( 𝑉  ∖  {  0  } )  ↔  ( 𝑡  ∈  𝑉  ∧  𝑡  ≠   0  ) ) | 
						
							| 20 | 16 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑉  ∖  {  0  } ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 21 | 17 | adantr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑉  ∖  {  0  } ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑉  ∖  {  0  } ) )  →  𝑡  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 21 22 | hgmaprnlem4N | ⊢ ( ( 𝜑  ∧  𝑡  ∈  ( 𝑉  ∖  {  0  } ) )  →  𝑧  ∈  ran  𝐺 ) | 
						
							| 24 | 19 23 | sylan2br | ⊢ ( ( 𝜑  ∧  ( 𝑡  ∈  𝑉  ∧  𝑡  ≠   0  ) )  →  𝑧  ∈  ran  𝐺 ) | 
						
							| 25 | 18 24 | rexlimddv | ⊢ ( 𝜑  →  𝑧  ∈  ran  𝐺 ) |