Step |
Hyp |
Ref |
Expression |
1 |
|
hgmaprnlem1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hgmaprnlem1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hgmaprnlem1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hgmaprnlem1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
5 |
|
hgmaprnlem1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
hgmaprnlem1.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
7 |
|
hgmaprnlem1.o |
⊢ 0 = ( 0g ‘ 𝑈 ) |
8 |
|
hgmaprnlem1.c |
⊢ 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hgmaprnlem1.d |
⊢ 𝐷 = ( Base ‘ 𝐶 ) |
10 |
|
hgmaprnlem1.p |
⊢ 𝑃 = ( Scalar ‘ 𝐶 ) |
11 |
|
hgmaprnlem1.a |
⊢ 𝐴 = ( Base ‘ 𝑃 ) |
12 |
|
hgmaprnlem1.e |
⊢ ∙ = ( ·𝑠 ‘ 𝐶 ) |
13 |
|
hgmaprnlem1.q |
⊢ 𝑄 = ( 0g ‘ 𝐶 ) |
14 |
|
hgmaprnlem1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
hgmaprnlem1.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
|
hgmaprnlem1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
hgmaprnlem1.z |
⊢ ( 𝜑 → 𝑧 ∈ 𝐴 ) |
18 |
1 2 3 7 16
|
dvh1dim |
⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝑉 𝑡 ≠ 0 ) |
19 |
|
eldifsn |
⊢ ( 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑡 ∈ 𝑉 ∧ 𝑡 ≠ 0 ) ) |
20 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
21 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑧 ∈ 𝐴 ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ) |
23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20 21 22
|
hgmaprnlem4N |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝑉 ∖ { 0 } ) ) → 𝑧 ∈ ran 𝐺 ) |
24 |
19 23
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑉 ∧ 𝑡 ≠ 0 ) ) → 𝑧 ∈ ran 𝐺 ) |
25 |
18 24
|
rexlimddv |
⊢ ( 𝜑 → 𝑧 ∈ ran 𝐺 ) |