| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmaprn.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmaprn.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmaprn.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | hgmaprn.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | hgmaprn.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hgmaprn.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 | 1 2 3 4 5 6 | hgmapfnN | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) | 
						
							| 8 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | eqid | ⊢ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 11 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  𝑧  ∈  𝐵 ) | 
						
							| 13 | 1 2 3 4 8 9 10 5 11 12 | hgmapdcl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑧 )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  𝐵 ( 𝐺 ‘ 𝑧 )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 15 |  | fnfvrnss | ⊢ ( ( 𝐺  Fn  𝐵  ∧  ∀ 𝑧  ∈  𝐵 ( 𝐺 ‘ 𝑧 )  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  →  ran  𝐺  ⊆  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 16 | 7 14 15 | syl2anc | ⊢ ( 𝜑  →  ran  𝐺  ⊆  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 18 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑈 )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 19 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 21 |  | eqid | ⊢ (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 22 |  | eqid | ⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 23 |  | eqid | ⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 24 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  →  𝑧  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 26 | 1 2 17 3 4 18 19 8 20 9 10 21 22 23 5 24 25 | hgmaprnlem5N | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) )  →  𝑧  ∈  ran  𝐺 ) | 
						
							| 27 | 16 26 | eqelssd | ⊢ ( 𝜑  →  ran  𝐺  =  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) | 
						
							| 28 | 1 2 3 4 8 9 10 6 | lcdsbase | ⊢ ( 𝜑  →  ( Base ‘ ( Scalar ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  =  𝐵 ) | 
						
							| 29 | 27 28 | eqtrd | ⊢ ( 𝜑  →  ran  𝐺  =  𝐵 ) |