Metamath Proof Explorer


Theorem hgmaprnN

Description: Part of proof of part 16 in Baer p. 50 line 23, Fs=G, except that we use the original vector space scalars for the range. (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmaprn.h H = LHyp K
hgmaprn.u U = DVecH K W
hgmaprn.r R = Scalar U
hgmaprn.b B = Base R
hgmaprn.g G = HGMap K W
hgmaprn.k φ K HL W H
Assertion hgmaprnN φ ran G = B

Proof

Step Hyp Ref Expression
1 hgmaprn.h H = LHyp K
2 hgmaprn.u U = DVecH K W
3 hgmaprn.r R = Scalar U
4 hgmaprn.b B = Base R
5 hgmaprn.g G = HGMap K W
6 hgmaprn.k φ K HL W H
7 1 2 3 4 5 6 hgmapfnN φ G Fn B
8 eqid LCDual K W = LCDual K W
9 eqid Scalar LCDual K W = Scalar LCDual K W
10 eqid Base Scalar LCDual K W = Base Scalar LCDual K W
11 6 adantr φ z B K HL W H
12 simpr φ z B z B
13 1 2 3 4 8 9 10 5 11 12 hgmapdcl φ z B G z Base Scalar LCDual K W
14 13 ralrimiva φ z B G z Base Scalar LCDual K W
15 fnfvrnss G Fn B z B G z Base Scalar LCDual K W ran G Base Scalar LCDual K W
16 7 14 15 syl2anc φ ran G Base Scalar LCDual K W
17 eqid Base U = Base U
18 eqid U = U
19 eqid 0 U = 0 U
20 eqid Base LCDual K W = Base LCDual K W
21 eqid LCDual K W = LCDual K W
22 eqid 0 LCDual K W = 0 LCDual K W
23 eqid HDMap K W = HDMap K W
24 6 adantr φ z Base Scalar LCDual K W K HL W H
25 simpr φ z Base Scalar LCDual K W z Base Scalar LCDual K W
26 1 2 17 3 4 18 19 8 20 9 10 21 22 23 5 24 25 hgmaprnlem5N φ z Base Scalar LCDual K W z ran G
27 16 26 eqelssd φ ran G = Base Scalar LCDual K W
28 1 2 3 4 8 9 10 6 lcdsbase φ Base Scalar LCDual K W = B
29 27 28 eqtrd φ ran G = B