Metamath Proof Explorer


Theorem hgmap11

Description: The scalar sigma map is one-to-one. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses hgmap11.h H=LHypK
hgmap11.u U=DVecHKW
hgmap11.r R=ScalarU
hgmap11.b B=BaseR
hgmap11.g G=HGMapKW
hgmap11.k φKHLWH
hgmap11.x φXB
hgmap11.y φYB
Assertion hgmap11 φGX=GYX=Y

Proof

Step Hyp Ref Expression
1 hgmap11.h H=LHypK
2 hgmap11.u U=DVecHKW
3 hgmap11.r R=ScalarU
4 hgmap11.b B=BaseR
5 hgmap11.g G=HGMapKW
6 hgmap11.k φKHLWH
7 hgmap11.x φXB
8 hgmap11.y φYB
9 eqid BaseU=BaseU
10 eqid 0U=0U
11 1 2 9 10 6 dvh1dim φtBaseUt0U
12 11 adantr φGX=GYtBaseUt0U
13 simp1r φGX=GYtBaseUt0UGX=GY
14 13 oveq1d φGX=GYtBaseUt0UGXLCDualKWHDMapKWt=GYLCDualKWHDMapKWt
15 eqid U=U
16 eqid LCDualKW=LCDualKW
17 eqid LCDualKW=LCDualKW
18 eqid HDMapKW=HDMapKW
19 simp1l φGX=GYtBaseUt0Uφ
20 19 6 syl φGX=GYtBaseUt0UKHLWH
21 simp2 φGX=GYtBaseUt0UtBaseU
22 19 7 syl φGX=GYtBaseUt0UXB
23 1 2 9 15 3 4 16 17 18 5 20 21 22 hgmapvs φGX=GYtBaseUt0UHDMapKWXUt=GXLCDualKWHDMapKWt
24 19 8 syl φGX=GYtBaseUt0UYB
25 1 2 9 15 3 4 16 17 18 5 20 21 24 hgmapvs φGX=GYtBaseUt0UHDMapKWYUt=GYLCDualKWHDMapKWt
26 14 23 25 3eqtr4d φGX=GYtBaseUt0UHDMapKWXUt=HDMapKWYUt
27 1 2 6 dvhlmod φULMod
28 19 27 syl φGX=GYtBaseUt0UULMod
29 9 3 15 4 lmodvscl ULModXBtBaseUXUtBaseU
30 28 22 21 29 syl3anc φGX=GYtBaseUt0UXUtBaseU
31 9 3 15 4 lmodvscl ULModYBtBaseUYUtBaseU
32 28 24 21 31 syl3anc φGX=GYtBaseUt0UYUtBaseU
33 1 2 9 18 20 30 32 hdmap11 φGX=GYtBaseUt0UHDMapKWXUt=HDMapKWYUtXUt=YUt
34 26 33 mpbid φGX=GYtBaseUt0UXUt=YUt
35 1 2 6 dvhlvec φULVec
36 19 35 syl φGX=GYtBaseUt0UULVec
37 simp3 φGX=GYtBaseUt0Ut0U
38 9 15 3 4 10 36 22 24 21 37 lvecvscan2 φGX=GYtBaseUt0UXUt=YUtX=Y
39 34 38 mpbid φGX=GYtBaseUt0UX=Y
40 39 rexlimdv3a φGX=GYtBaseUt0UX=Y
41 12 40 mpd φGX=GYX=Y
42 41 ex φGX=GYX=Y
43 fveq2 X=YGX=GY
44 42 43 impbid1 φGX=GYX=Y