Metamath Proof Explorer


Theorem hgmapvs

Description: Part 15 of Baer p. 50 line 6. Also line 15 in Holland95 p. 14. (Contributed by NM, 6-Jun-2015)

Ref Expression
Hypotheses hgmapvs.h H=LHypK
hgmapvs.u U=DVecHKW
hgmapvs.v V=BaseU
hgmapvs.t ·˙=U
hgmapvs.r R=ScalarU
hgmapvs.b B=BaseR
hgmapvs.c C=LCDualKW
hgmapvs.e ˙=C
hgmapvs.s S=HDMapKW
hgmapvs.g G=HGMapKW
hgmapvs.k φKHLWH
hgmapvs.x φXV
hgmapvs.f φFB
Assertion hgmapvs φSF·˙X=GF˙SX

Proof

Step Hyp Ref Expression
1 hgmapvs.h H=LHypK
2 hgmapvs.u U=DVecHKW
3 hgmapvs.v V=BaseU
4 hgmapvs.t ·˙=U
5 hgmapvs.r R=ScalarU
6 hgmapvs.b B=BaseR
7 hgmapvs.c C=LCDualKW
8 hgmapvs.e ˙=C
9 hgmapvs.s S=HDMapKW
10 hgmapvs.g G=HGMapKW
11 hgmapvs.k φKHLWH
12 hgmapvs.x φXV
13 hgmapvs.f φFB
14 1 2 3 4 5 6 7 8 9 10 11 13 hgmapval φGF=ιgB|xVSF·˙x=g˙Sx
15 14 eqcomd φιgB|xVSF·˙x=g˙Sx=GF
16 1 2 5 6 10 11 13 hgmapcl φGFB
17 1 2 3 4 5 6 7 8 9 11 13 hdmap14lem15 φ∃!gBxVSF·˙x=g˙Sx
18 oveq1 g=GFg˙Sx=GF˙Sx
19 18 eqeq2d g=GFSF·˙x=g˙SxSF·˙x=GF˙Sx
20 19 ralbidv g=GFxVSF·˙x=g˙SxxVSF·˙x=GF˙Sx
21 20 riota2 GFB∃!gBxVSF·˙x=g˙SxxVSF·˙x=GF˙SxιgB|xVSF·˙x=g˙Sx=GF
22 16 17 21 syl2anc φxVSF·˙x=GF˙SxιgB|xVSF·˙x=g˙Sx=GF
23 15 22 mpbird φxVSF·˙x=GF˙Sx
24 oveq2 x=XF·˙x=F·˙X
25 24 fveq2d x=XSF·˙x=SF·˙X
26 fveq2 x=XSx=SX
27 26 oveq2d x=XGF˙Sx=GF˙SX
28 25 27 eqeq12d x=XSF·˙x=GF˙SxSF·˙X=GF˙SX
29 28 rspcva XVxVSF·˙x=GF˙SxSF·˙X=GF˙SX
30 12 23 29 syl2anc φSF·˙X=GF˙SX