Metamath Proof Explorer


Theorem hgmapval

Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of Baer p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 . (Contributed by NM, 25-Mar-2015)

Ref Expression
Hypotheses hgmapval.h H = LHyp K
hgmapfval.u U = DVecH K W
hgmapfval.v V = Base U
hgmapfval.t · ˙ = U
hgmapfval.r R = Scalar U
hgmapfval.b B = Base R
hgmapfval.c C = LCDual K W
hgmapfval.s ˙ = C
hgmapfval.m M = HDMap K W
hgmapfval.i I = HGMap K W
hgmapfval.k φ K Y W H
hgmapval.x φ X B
Assertion hgmapval φ I X = ι y B | v V M X · ˙ v = y ˙ M v

Proof

Step Hyp Ref Expression
1 hgmapval.h H = LHyp K
2 hgmapfval.u U = DVecH K W
3 hgmapfval.v V = Base U
4 hgmapfval.t · ˙ = U
5 hgmapfval.r R = Scalar U
6 hgmapfval.b B = Base R
7 hgmapfval.c C = LCDual K W
8 hgmapfval.s ˙ = C
9 hgmapfval.m M = HDMap K W
10 hgmapfval.i I = HGMap K W
11 hgmapfval.k φ K Y W H
12 hgmapval.x φ X B
13 1 2 3 4 5 6 7 8 9 10 11 hgmapfval φ I = x B ι y B | v V M x · ˙ v = y ˙ M v
14 13 fveq1d φ I X = x B ι y B | v V M x · ˙ v = y ˙ M v X
15 riotaex ι y B | v V M X · ˙ v = y ˙ M v V
16 fvoveq1 x = X M x · ˙ v = M X · ˙ v
17 16 eqeq1d x = X M x · ˙ v = y ˙ M v M X · ˙ v = y ˙ M v
18 17 ralbidv x = X v V M x · ˙ v = y ˙ M v v V M X · ˙ v = y ˙ M v
19 18 riotabidv x = X ι y B | v V M x · ˙ v = y ˙ M v = ι y B | v V M X · ˙ v = y ˙ M v
20 eqid x B ι y B | v V M x · ˙ v = y ˙ M v = x B ι y B | v V M x · ˙ v = y ˙ M v
21 19 20 fvmptg X B ι y B | v V M X · ˙ v = y ˙ M v V x B ι y B | v V M x · ˙ v = y ˙ M v X = ι y B | v V M X · ˙ v = y ˙ M v
22 12 15 21 sylancl φ x B ι y B | v V M x · ˙ v = y ˙ M v X = ι y B | v V M X · ˙ v = y ˙ M v
23 14 22 eqtrd φ I X = ι y B | v V M X · ˙ v = y ˙ M v