Metamath Proof Explorer


Theorem hgmapfnN

Description: Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmapfn.h H = LHyp K
hgmapfn.u U = DVecH K W
hgmapfn.r R = Scalar U
hgmapfn.b B = Base R
hgmapfn.g G = HGMap K W
hgmapfn.k φ K HL W H
Assertion hgmapfnN φ G Fn B

Proof

Step Hyp Ref Expression
1 hgmapfn.h H = LHyp K
2 hgmapfn.u U = DVecH K W
3 hgmapfn.r R = Scalar U
4 hgmapfn.b B = Base R
5 hgmapfn.g G = HGMap K W
6 hgmapfn.k φ K HL W H
7 riotaex ι j B | x Base U HDMap K W k U x = j LCDual K W HDMap K W x V
8 eqid k B ι j B | x Base U HDMap K W k U x = j LCDual K W HDMap K W x = k B ι j B | x Base U HDMap K W k U x = j LCDual K W HDMap K W x
9 7 8 fnmpti k B ι j B | x Base U HDMap K W k U x = j LCDual K W HDMap K W x Fn B
10 eqid Base U = Base U
11 eqid U = U
12 eqid LCDual K W = LCDual K W
13 eqid LCDual K W = LCDual K W
14 eqid HDMap K W = HDMap K W
15 1 2 10 11 3 4 12 13 14 5 6 hgmapfval φ G = k B ι j B | x Base U HDMap K W k U x = j LCDual K W HDMap K W x
16 15 fneq1d φ G Fn B k B ι j B | x Base U HDMap K W k U x = j LCDual K W HDMap K W x Fn B
17 9 16 mpbiri φ G Fn B