Metamath Proof Explorer


Theorem hgmapfnN

Description: Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmapfn.h H=LHypK
hgmapfn.u U=DVecHKW
hgmapfn.r R=ScalarU
hgmapfn.b B=BaseR
hgmapfn.g G=HGMapKW
hgmapfn.k φKHLWH
Assertion hgmapfnN φGFnB

Proof

Step Hyp Ref Expression
1 hgmapfn.h H=LHypK
2 hgmapfn.u U=DVecHKW
3 hgmapfn.r R=ScalarU
4 hgmapfn.b B=BaseR
5 hgmapfn.g G=HGMapKW
6 hgmapfn.k φKHLWH
7 riotaex ιjB|xBaseUHDMapKWkUx=jLCDualKWHDMapKWxV
8 eqid kBιjB|xBaseUHDMapKWkUx=jLCDualKWHDMapKWx=kBιjB|xBaseUHDMapKWkUx=jLCDualKWHDMapKWx
9 7 8 fnmpti kBιjB|xBaseUHDMapKWkUx=jLCDualKWHDMapKWxFnB
10 eqid BaseU=BaseU
11 eqid U=U
12 eqid LCDualKW=LCDualKW
13 eqid LCDualKW=LCDualKW
14 eqid HDMapKW=HDMapKW
15 1 2 10 11 3 4 12 13 14 5 6 hgmapfval φG=kBιjB|xBaseUHDMapKWkUx=jLCDualKWHDMapKWx
16 15 fneq1d φGFnBkBιjB|xBaseUHDMapKWkUx=jLCDualKWHDMapKWxFnB
17 9 16 mpbiri φGFnB