Step |
Hyp |
Ref |
Expression |
1 |
|
hgmap11.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hgmap11.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hgmap11.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
4 |
|
hgmap11.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
5 |
|
hgmap11.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hgmap11.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
|
hgmap11.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
8 |
|
hgmap11.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) |
10 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
11 |
1 2 9 10 6
|
dvh1dim |
⊢ ( 𝜑 → ∃ 𝑡 ∈ ( Base ‘ 𝑈 ) 𝑡 ≠ ( 0g ‘ 𝑈 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) → ∃ 𝑡 ∈ ( Base ‘ 𝑈 ) 𝑡 ≠ ( 0g ‘ 𝑈 ) ) |
13 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) |
14 |
13
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 𝐺 ‘ 𝑋 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) = ( ( 𝐺 ‘ 𝑌 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) |
15 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) |
16 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
17 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
18 |
|
eqid |
⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
19 |
|
simp1l |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝜑 ) |
20 |
19 6
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
21 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑡 ∈ ( Base ‘ 𝑈 ) ) |
22 |
19 7
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) |
23 |
1 2 9 15 3 4 16 17 18 5 20 21 22
|
hgmapvs |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) = ( ( 𝐺 ‘ 𝑋 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) |
24 |
19 8
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑌 ∈ 𝐵 ) |
25 |
1 2 9 15 3 4 16 17 18 5 20 21 24
|
hgmapvs |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) = ( ( 𝐺 ‘ 𝑌 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) |
26 |
14 23 25
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ) |
27 |
1 2 6
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
28 |
19 27
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LMod ) |
29 |
9 3 15 4
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ∈ ( Base ‘ 𝑈 ) ) |
30 |
28 22 21 29
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ∈ ( Base ‘ 𝑈 ) ) |
31 |
9 3 15 4
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝑌 ∈ 𝐵 ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ) → ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ∈ ( Base ‘ 𝑈 ) ) |
32 |
28 24 21 31
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ∈ ( Base ‘ 𝑈 ) ) |
33 |
1 2 9 18 20 30 32
|
hdmap11 |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) = ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ↔ ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) = ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) ) |
34 |
26 33
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) = ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ) |
35 |
1 2 6
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
36 |
19 35
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LVec ) |
37 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑡 ≠ ( 0g ‘ 𝑈 ) ) |
38 |
9 15 3 4 10 36 22 24 21 37
|
lvecvscan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 𝑋 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) = ( 𝑌 ( ·𝑠 ‘ 𝑈 ) 𝑡 ) ↔ 𝑋 = 𝑌 ) ) |
39 |
34 38
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) ∧ 𝑡 ∈ ( Base ‘ 𝑈 ) ∧ 𝑡 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 = 𝑌 ) |
40 |
39
|
rexlimdv3a |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) → ( ∃ 𝑡 ∈ ( Base ‘ 𝑈 ) 𝑡 ≠ ( 0g ‘ 𝑈 ) → 𝑋 = 𝑌 ) ) |
41 |
12 40
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) → 𝑋 = 𝑌 ) |
42 |
41
|
ex |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) |
43 |
|
fveq2 |
⊢ ( 𝑋 = 𝑌 → ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ) |
44 |
42 43
|
impbid1 |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |