| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmap11.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmap11.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmap11.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | hgmap11.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | hgmap11.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | hgmap11.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 7 |  | hgmap11.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 8 |  | hgmap11.y | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑈 )  =  ( Base ‘ 𝑈 ) | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 11 | 1 2 9 10 6 | dvh1dim | ⊢ ( 𝜑  →  ∃ 𝑡  ∈  ( Base ‘ 𝑈 ) 𝑡  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  →  ∃ 𝑡  ∈  ( Base ‘ 𝑈 ) 𝑡  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 13 |  | simp1r | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 𝐺 ‘ 𝑋 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑌 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) | 
						
							| 15 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑈 )  =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 16 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 17 |  | eqid | ⊢ (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 18 |  | eqid | ⊢ ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 19 |  | simp1l | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝜑 ) | 
						
							| 20 | 19 6 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 21 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑡  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 22 | 19 7 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 23 | 1 2 9 15 3 4 16 17 18 5 20 21 22 | hgmapvs | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑋 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) | 
						
							| 24 | 19 8 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 25 | 1 2 9 15 3 4 16 17 18 5 20 21 24 | hgmapvs | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) )  =  ( ( 𝐺 ‘ 𝑌 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ 𝑡 ) ) ) | 
						
							| 26 | 14 23 25 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) )  =  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) ) ) | 
						
							| 27 | 1 2 6 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 28 | 19 27 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑈  ∈  LMod ) | 
						
							| 29 | 9 3 15 4 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑋  ∈  𝐵  ∧  𝑡  ∈  ( Base ‘ 𝑈 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑡 )  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 30 | 28 22 21 29 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑡 )  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 31 | 9 3 15 4 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝑌  ∈  𝐵  ∧  𝑡  ∈  ( Base ‘ 𝑈 ) )  →  ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 )  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 32 | 28 24 21 31 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 )  ∈  ( Base ‘ 𝑈 ) ) | 
						
							| 33 | 1 2 9 18 20 30 32 | hdmap11 | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) )  =  ( ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) )  ↔  ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑡 )  =  ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) ) ) | 
						
							| 34 | 26 33 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑡 )  =  ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 ) ) | 
						
							| 35 | 1 2 6 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 36 | 19 35 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑈  ∈  LVec ) | 
						
							| 37 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑡  ≠  ( 0g ‘ 𝑈 ) ) | 
						
							| 38 | 9 15 3 4 10 36 22 24 21 37 | lvecvscan2 | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 𝑋 (  ·𝑠  ‘ 𝑈 ) 𝑡 )  =  ( 𝑌 (  ·𝑠  ‘ 𝑈 ) 𝑡 )  ↔  𝑋  =  𝑌 ) ) | 
						
							| 39 | 34 38 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  ∧  𝑡  ∈  ( Base ‘ 𝑈 )  ∧  𝑡  ≠  ( 0g ‘ 𝑈 ) )  →  𝑋  =  𝑌 ) | 
						
							| 40 | 39 | rexlimdv3a | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  →  ( ∃ 𝑡  ∈  ( Base ‘ 𝑈 ) 𝑡  ≠  ( 0g ‘ 𝑈 )  →  𝑋  =  𝑌 ) ) | 
						
							| 41 | 12 40 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) )  →  𝑋  =  𝑌 ) | 
						
							| 42 | 41 | ex | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) | 
						
							| 43 |  | fveq2 | ⊢ ( 𝑋  =  𝑌  →  ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 ) ) | 
						
							| 44 | 42 43 | impbid1 | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘ 𝑌 )  ↔  𝑋  =  𝑌 ) ) |