Step |
Hyp |
Ref |
Expression |
1 |
|
hgmapf1o.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hgmapf1o.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hgmapf1o.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
4 |
|
hgmapf1o.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
5 |
|
hgmapf1o.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
hgmapf1o.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
7 |
1 2 3 4 5 6
|
hgmapfnN |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
8 |
1 2 3 4 5 6
|
hgmaprnN |
⊢ ( 𝜑 → ran 𝐺 = 𝐵 ) |
9 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
11 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) |
12 |
1 2 3 4 5 9 10 11
|
hgmap11 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
13 |
12
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
14 |
13
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
15 |
|
dff1o6 |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 ↔ ( 𝐺 Fn 𝐵 ∧ ran 𝐺 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
16 |
7 8 14 15
|
syl3anbrc |
⊢ ( 𝜑 → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |