Metamath Proof Explorer


Theorem hgmapf1oN

Description: The scalar sigma map is a one-to-one onto function. (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmapf1o.h 𝐻 = ( LHyp ‘ 𝐾 )
hgmapf1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hgmapf1o.r 𝑅 = ( Scalar ‘ 𝑈 )
hgmapf1o.b 𝐵 = ( Base ‘ 𝑅 )
hgmapf1o.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
hgmapf1o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
Assertion hgmapf1oN ( 𝜑𝐺 : 𝐵1-1-onto𝐵 )

Proof

Step Hyp Ref Expression
1 hgmapf1o.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hgmapf1o.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hgmapf1o.r 𝑅 = ( Scalar ‘ 𝑈 )
4 hgmapf1o.b 𝐵 = ( Base ‘ 𝑅 )
5 hgmapf1o.g 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 )
6 hgmapf1o.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
7 1 2 3 4 5 6 hgmapfnN ( 𝜑𝐺 Fn 𝐵 )
8 1 2 3 4 5 6 hgmaprnN ( 𝜑 → ran 𝐺 = 𝐵 )
9 6 adantr ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 simprl ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝑥𝐵 )
11 simprr ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → 𝑦𝐵 )
12 1 2 3 4 5 9 10 11 hgmap11 ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) ↔ 𝑥 = 𝑦 ) )
13 12 biimpd ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) → 𝑥 = 𝑦 ) )
14 13 ralrimivva ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) → 𝑥 = 𝑦 ) )
15 dff1o6 ( 𝐺 : 𝐵1-1-onto𝐵 ↔ ( 𝐺 Fn 𝐵 ∧ ran 𝐺 = 𝐵 ∧ ∀ 𝑥𝐵𝑦𝐵 ( ( 𝐺𝑥 ) = ( 𝐺𝑦 ) → 𝑥 = 𝑦 ) ) )
16 7 8 14 15 syl3anbrc ( 𝜑𝐺 : 𝐵1-1-onto𝐵 )