Metamath Proof Explorer


Theorem hgmapf1oN

Description: The scalar sigma map is a one-to-one onto function. (Contributed by NM, 7-Jun-2015) (New usage is discouraged.)

Ref Expression
Hypotheses hgmapf1o.h
|- H = ( LHyp ` K )
hgmapf1o.u
|- U = ( ( DVecH ` K ) ` W )
hgmapf1o.r
|- R = ( Scalar ` U )
hgmapf1o.b
|- B = ( Base ` R )
hgmapf1o.g
|- G = ( ( HGMap ` K ) ` W )
hgmapf1o.k
|- ( ph -> ( K e. HL /\ W e. H ) )
Assertion hgmapf1oN
|- ( ph -> G : B -1-1-onto-> B )

Proof

Step Hyp Ref Expression
1 hgmapf1o.h
 |-  H = ( LHyp ` K )
2 hgmapf1o.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hgmapf1o.r
 |-  R = ( Scalar ` U )
4 hgmapf1o.b
 |-  B = ( Base ` R )
5 hgmapf1o.g
 |-  G = ( ( HGMap ` K ) ` W )
6 hgmapf1o.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
7 1 2 3 4 5 6 hgmapfnN
 |-  ( ph -> G Fn B )
8 1 2 3 4 5 6 hgmaprnN
 |-  ( ph -> ran G = B )
9 6 adantr
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( K e. HL /\ W e. H ) )
10 simprl
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. B )
11 simprr
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. B )
12 1 2 3 4 5 9 10 11 hgmap11
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( G ` x ) = ( G ` y ) <-> x = y ) )
13 12 biimpd
 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( G ` x ) = ( G ` y ) -> x = y ) )
14 13 ralrimivva
 |-  ( ph -> A. x e. B A. y e. B ( ( G ` x ) = ( G ` y ) -> x = y ) )
15 dff1o6
 |-  ( G : B -1-1-onto-> B <-> ( G Fn B /\ ran G = B /\ A. x e. B A. y e. B ( ( G ` x ) = ( G ` y ) -> x = y ) ) )
16 7 8 14 15 syl3anbrc
 |-  ( ph -> G : B -1-1-onto-> B )