| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgmapf1o.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hgmapf1o.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hgmapf1o.r |
|- R = ( Scalar ` U ) |
| 4 |
|
hgmapf1o.b |
|- B = ( Base ` R ) |
| 5 |
|
hgmapf1o.g |
|- G = ( ( HGMap ` K ) ` W ) |
| 6 |
|
hgmapf1o.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 7 |
1 2 3 4 5 6
|
hgmapfnN |
|- ( ph -> G Fn B ) |
| 8 |
1 2 3 4 5 6
|
hgmaprnN |
|- ( ph -> ran G = B ) |
| 9 |
6
|
adantr |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
simprl |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
| 11 |
|
simprr |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
| 12 |
1 2 3 4 5 9 10 11
|
hgmap11 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( G ` x ) = ( G ` y ) <-> x = y ) ) |
| 13 |
12
|
biimpd |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( G ` x ) = ( G ` y ) -> x = y ) ) |
| 14 |
13
|
ralrimivva |
|- ( ph -> A. x e. B A. y e. B ( ( G ` x ) = ( G ` y ) -> x = y ) ) |
| 15 |
|
dff1o6 |
|- ( G : B -1-1-onto-> B <-> ( G Fn B /\ ran G = B /\ A. x e. B A. y e. B ( ( G ` x ) = ( G ` y ) -> x = y ) ) ) |
| 16 |
7 8 14 15
|
syl3anbrc |
|- ( ph -> G : B -1-1-onto-> B ) |