| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapf1o.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmapf1o.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmapf1o.r |  |-  R = ( Scalar ` U ) | 
						
							| 4 |  | hgmapf1o.b |  |-  B = ( Base ` R ) | 
						
							| 5 |  | hgmapf1o.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 6 |  | hgmapf1o.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 7 | 1 2 3 4 5 6 | hgmapfnN |  |-  ( ph -> G Fn B ) | 
						
							| 8 | 1 2 3 4 5 6 | hgmaprnN |  |-  ( ph -> ran G = B ) | 
						
							| 9 | 6 | adantr |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | simprl |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. B ) | 
						
							| 11 |  | simprr |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. B ) | 
						
							| 12 | 1 2 3 4 5 9 10 11 | hgmap11 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( G ` x ) = ( G ` y ) <-> x = y ) ) | 
						
							| 13 | 12 | biimpd |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( G ` x ) = ( G ` y ) -> x = y ) ) | 
						
							| 14 | 13 | ralrimivva |  |-  ( ph -> A. x e. B A. y e. B ( ( G ` x ) = ( G ` y ) -> x = y ) ) | 
						
							| 15 |  | dff1o6 |  |-  ( G : B -1-1-onto-> B <-> ( G Fn B /\ ran G = B /\ A. x e. B A. y e. B ( ( G ` x ) = ( G ` y ) -> x = y ) ) ) | 
						
							| 16 | 7 8 14 15 | syl3anbrc |  |-  ( ph -> G : B -1-1-onto-> B ) |