Metamath Proof Explorer


Theorem hgmapeq0

Description: The scalar sigma map is zero iff its argument is zero. (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hgmapeq0.h
|- H = ( LHyp ` K )
hgmapeq0.u
|- U = ( ( DVecH ` K ) ` W )
hgmapeq0.r
|- R = ( Scalar ` U )
hgmapeq0.b
|- B = ( Base ` R )
hgmapeq0.o
|- .0. = ( 0g ` R )
hgmapeq0.g
|- G = ( ( HGMap ` K ) ` W )
hgmapeq0.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hgmapeq0.x
|- ( ph -> X e. B )
Assertion hgmapeq0
|- ( ph -> ( ( G ` X ) = .0. <-> X = .0. ) )

Proof

Step Hyp Ref Expression
1 hgmapeq0.h
 |-  H = ( LHyp ` K )
2 hgmapeq0.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hgmapeq0.r
 |-  R = ( Scalar ` U )
4 hgmapeq0.b
 |-  B = ( Base ` R )
5 hgmapeq0.o
 |-  .0. = ( 0g ` R )
6 hgmapeq0.g
 |-  G = ( ( HGMap ` K ) ` W )
7 hgmapeq0.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
8 hgmapeq0.x
 |-  ( ph -> X e. B )
9 1 2 3 5 6 7 hgmapval0
 |-  ( ph -> ( G ` .0. ) = .0. )
10 9 eqeq2d
 |-  ( ph -> ( ( G ` X ) = ( G ` .0. ) <-> ( G ` X ) = .0. ) )
11 1 2 7 dvhlmod
 |-  ( ph -> U e. LMod )
12 3 4 5 lmod0cl
 |-  ( U e. LMod -> .0. e. B )
13 11 12 syl
 |-  ( ph -> .0. e. B )
14 1 2 3 4 6 7 8 13 hgmap11
 |-  ( ph -> ( ( G ` X ) = ( G ` .0. ) <-> X = .0. ) )
15 10 14 bitr3d
 |-  ( ph -> ( ( G ` X ) = .0. <-> X = .0. ) )