| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgmapeq0.h |
|- H = ( LHyp ` K ) |
| 2 |
|
hgmapeq0.u |
|- U = ( ( DVecH ` K ) ` W ) |
| 3 |
|
hgmapeq0.r |
|- R = ( Scalar ` U ) |
| 4 |
|
hgmapeq0.b |
|- B = ( Base ` R ) |
| 5 |
|
hgmapeq0.o |
|- .0. = ( 0g ` R ) |
| 6 |
|
hgmapeq0.g |
|- G = ( ( HGMap ` K ) ` W ) |
| 7 |
|
hgmapeq0.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
hgmapeq0.x |
|- ( ph -> X e. B ) |
| 9 |
1 2 3 5 6 7
|
hgmapval0 |
|- ( ph -> ( G ` .0. ) = .0. ) |
| 10 |
9
|
eqeq2d |
|- ( ph -> ( ( G ` X ) = ( G ` .0. ) <-> ( G ` X ) = .0. ) ) |
| 11 |
1 2 7
|
dvhlmod |
|- ( ph -> U e. LMod ) |
| 12 |
3 4 5
|
lmod0cl |
|- ( U e. LMod -> .0. e. B ) |
| 13 |
11 12
|
syl |
|- ( ph -> .0. e. B ) |
| 14 |
1 2 3 4 6 7 8 13
|
hgmap11 |
|- ( ph -> ( ( G ` X ) = ( G ` .0. ) <-> X = .0. ) ) |
| 15 |
10 14
|
bitr3d |
|- ( ph -> ( ( G ` X ) = .0. <-> X = .0. ) ) |