| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapeq0.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hgmapeq0.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hgmapeq0.r |  |-  R = ( Scalar ` U ) | 
						
							| 4 |  | hgmapeq0.b |  |-  B = ( Base ` R ) | 
						
							| 5 |  | hgmapeq0.o |  |-  .0. = ( 0g ` R ) | 
						
							| 6 |  | hgmapeq0.g |  |-  G = ( ( HGMap ` K ) ` W ) | 
						
							| 7 |  | hgmapeq0.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 8 |  | hgmapeq0.x |  |-  ( ph -> X e. B ) | 
						
							| 9 | 1 2 3 5 6 7 | hgmapval0 |  |-  ( ph -> ( G ` .0. ) = .0. ) | 
						
							| 10 | 9 | eqeq2d |  |-  ( ph -> ( ( G ` X ) = ( G ` .0. ) <-> ( G ` X ) = .0. ) ) | 
						
							| 11 | 1 2 7 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 12 | 3 4 5 | lmod0cl |  |-  ( U e. LMod -> .0. e. B ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> .0. e. B ) | 
						
							| 14 | 1 2 3 4 6 7 8 13 | hgmap11 |  |-  ( ph -> ( ( G ` X ) = ( G ` .0. ) <-> X = .0. ) ) | 
						
							| 15 | 10 14 | bitr3d |  |-  ( ph -> ( ( G ` X ) = .0. <-> X = .0. ) ) |