| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hgmapeq0.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hgmapeq0.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hgmapeq0.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 4 |  | hgmapeq0.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 5 |  | hgmapeq0.o | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 6 |  | hgmapeq0.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hgmapeq0.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 8 |  | hgmapeq0.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 9 | 1 2 3 5 6 7 | hgmapval0 | ⊢ ( 𝜑  →  ( 𝐺 ‘  0  )  =   0  ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘  0  )  ↔  ( 𝐺 ‘ 𝑋 )  =   0  ) ) | 
						
							| 11 | 1 2 7 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 12 | 3 4 5 | lmod0cl | ⊢ ( 𝑈  ∈  LMod  →   0   ∈  𝐵 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →   0   ∈  𝐵 ) | 
						
							| 14 | 1 2 3 4 6 7 8 13 | hgmap11 | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 )  =  ( 𝐺 ‘  0  )  ↔  𝑋  =   0  ) ) | 
						
							| 15 | 10 14 | bitr3d | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 𝑋 )  =   0   ↔  𝑋  =   0  ) ) |