| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hgmapeq0.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hgmapeq0.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hgmapeq0.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 4 |
|
hgmapeq0.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 5 |
|
hgmapeq0.o |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 6 |
|
hgmapeq0.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
hgmapeq0.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
hgmapeq0.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 9 |
1 2 3 5 6 7
|
hgmapval0 |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = 0 ) |
| 10 |
9
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 0 ) ↔ ( 𝐺 ‘ 𝑋 ) = 0 ) ) |
| 11 |
1 2 7
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
| 12 |
3 4 5
|
lmod0cl |
⊢ ( 𝑈 ∈ LMod → 0 ∈ 𝐵 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 14 |
1 2 3 4 6 7 8 13
|
hgmap11 |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) = ( 𝐺 ‘ 0 ) ↔ 𝑋 = 0 ) ) |
| 15 |
10 14
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 𝑋 ) = 0 ↔ 𝑋 = 0 ) ) |