| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmapipcl.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmapipcl.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmapipcl.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmapipcl.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 5 |
|
hdmapipcl.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
hdmapipcl.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 7 |
|
hdmapipcl.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 8 |
|
hdmapipcl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 9 |
|
hdmapipcl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 10 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 12 |
1 2 3 10 11 6 7 9
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑌 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 13 |
1 2 3 4 5 10 11 7 12 8
|
lcdvbasecl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ∈ 𝐵 ) |