Metamath Proof Explorer


Theorem hdmapipcl

Description: The inner product (Hermitian form) ( X , Y ) will be defined as ( ( SY )X ) . Show closure. (Contributed by NM, 7-Jun-2015)

Ref Expression
Hypotheses hdmapipcl.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapipcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapipcl.v 𝑉 = ( Base ‘ 𝑈 )
hdmapipcl.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmapipcl.b 𝐵 = ( Base ‘ 𝑅 )
hdmapipcl.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapipcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmapipcl.x ( 𝜑𝑋𝑉 )
hdmapipcl.y ( 𝜑𝑌𝑉 )
Assertion hdmapipcl ( 𝜑 → ( ( 𝑆𝑌 ) ‘ 𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 hdmapipcl.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapipcl.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmapipcl.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmapipcl.r 𝑅 = ( Scalar ‘ 𝑈 )
5 hdmapipcl.b 𝐵 = ( Base ‘ 𝑅 )
6 hdmapipcl.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
7 hdmapipcl.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 hdmapipcl.x ( 𝜑𝑋𝑉 )
9 hdmapipcl.y ( 𝜑𝑌𝑉 )
10 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
11 eqid ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
12 1 2 3 10 11 6 7 9 hdmapcl ( 𝜑 → ( 𝑆𝑌 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
13 1 2 3 4 5 10 11 7 12 8 lcdvbasecl ( 𝜑 → ( ( 𝑆𝑌 ) ‘ 𝑋 ) ∈ 𝐵 )