| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapipcl.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapipcl.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmapipcl.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmapipcl.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 5 |  | hdmapipcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | hdmapipcl.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 7 |  | hdmapipcl.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 8 |  | hdmapipcl.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 9 |  | hdmapipcl.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 10 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 12 | 1 2 3 10 11 6 7 9 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑌 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 13 | 1 2 3 4 5 10 11 7 12 8 | lcdvbasecl | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 )  ∈  𝐵 ) |