Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapln1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapln1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmapln1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmapln1.p |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
hdmapln1.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
6 |
|
hdmapln1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
7 |
|
hdmapln1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
8 |
|
hdmapln1.q |
⊢ ⨣ = ( +g ‘ 𝑅 ) |
9 |
|
hdmapln1.m |
⊢ × = ( .r ‘ 𝑅 ) |
10 |
|
hdmapln1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmapln1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
hdmapln1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
13 |
|
hdmapln1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
14 |
|
hdmapln1.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
15 |
|
hdmapln1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
16 |
1 2 11
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
17 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
18 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
19 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
20 |
1 2 3 17 18 10 11 14
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑍 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
21 |
1 17 18 2 19 11 20
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑍 ) ∈ ( LFnl ‘ 𝑈 ) ) |
22 |
3 4 6 5 7 8 9 19
|
lfli |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑆 ‘ 𝑍 ) ∈ ( LFnl ‘ 𝑈 ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝑆 ‘ 𝑍 ) ‘ ( ( 𝐴 · 𝑋 ) + 𝑌 ) ) = ( ( 𝐴 × ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) ) ⨣ ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑌 ) ) ) |
23 |
16 21 15 12 13 22
|
syl113anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑍 ) ‘ ( ( 𝐴 · 𝑋 ) + 𝑌 ) ) = ( ( 𝐴 × ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) ) ⨣ ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑌 ) ) ) |