Metamath Proof Explorer


Theorem hdmaplna1

Description: Additive property of first (inner product) argument. (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses hdmaplna1.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmaplna1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmaplna1.v 𝑉 = ( Base ‘ 𝑈 )
hdmaplna1.p + = ( +g𝑈 )
hdmaplna1.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmaplna1.q = ( +g𝑅 )
hdmaplna1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmaplna1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmaplna1.x ( 𝜑𝑋𝑉 )
hdmaplna1.y ( 𝜑𝑌𝑉 )
hdmaplna1.z ( 𝜑𝑍𝑉 )
Assertion hdmaplna1 ( 𝜑 → ( ( 𝑆𝑍 ) ‘ ( 𝑋 + 𝑌 ) ) = ( ( ( 𝑆𝑍 ) ‘ 𝑋 ) ( ( 𝑆𝑍 ) ‘ 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 hdmaplna1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmaplna1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmaplna1.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmaplna1.p + = ( +g𝑈 )
5 hdmaplna1.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hdmaplna1.q = ( +g𝑅 )
7 hdmaplna1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
8 hdmaplna1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 hdmaplna1.x ( 𝜑𝑋𝑉 )
10 hdmaplna1.y ( 𝜑𝑌𝑉 )
11 hdmaplna1.z ( 𝜑𝑍𝑉 )
12 1 2 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
13 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
14 eqid ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
15 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
16 1 2 3 13 14 7 8 11 hdmapcl ( 𝜑 → ( 𝑆𝑍 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
17 1 13 14 2 15 8 16 lcdvbaselfl ( 𝜑 → ( 𝑆𝑍 ) ∈ ( LFnl ‘ 𝑈 ) )
18 5 6 3 4 15 lfladd ( ( 𝑈 ∈ LMod ∧ ( 𝑆𝑍 ) ∈ ( LFnl ‘ 𝑈 ) ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( ( 𝑆𝑍 ) ‘ ( 𝑋 + 𝑌 ) ) = ( ( ( 𝑆𝑍 ) ‘ 𝑋 ) ( ( 𝑆𝑍 ) ‘ 𝑌 ) ) )
19 12 17 9 10 18 syl112anc ( 𝜑 → ( ( 𝑆𝑍 ) ‘ ( 𝑋 + 𝑌 ) ) = ( ( ( 𝑆𝑍 ) ‘ 𝑋 ) ( ( 𝑆𝑍 ) ‘ 𝑌 ) ) )