Metamath Proof Explorer


Theorem hdmaplns1

Description: Subtraction property of first (inner product) argument. (Contributed by NM, 12-Jun-2015)

Ref Expression
Hypotheses hdmaplns1.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmaplns1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmaplns1.v 𝑉 = ( Base ‘ 𝑈 )
hdmaplns1.m = ( -g𝑈 )
hdmaplns1.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmaplns1.n 𝑁 = ( -g𝑅 )
hdmaplns1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmaplns1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmaplns1.x ( 𝜑𝑋𝑉 )
hdmaplns1.y ( 𝜑𝑌𝑉 )
hdmaplns1.z ( 𝜑𝑍𝑉 )
Assertion hdmaplns1 ( 𝜑 → ( ( 𝑆𝑍 ) ‘ ( 𝑋 𝑌 ) ) = ( ( ( 𝑆𝑍 ) ‘ 𝑋 ) 𝑁 ( ( 𝑆𝑍 ) ‘ 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 hdmaplns1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmaplns1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmaplns1.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmaplns1.m = ( -g𝑈 )
5 hdmaplns1.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hdmaplns1.n 𝑁 = ( -g𝑅 )
7 hdmaplns1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
8 hdmaplns1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 hdmaplns1.x ( 𝜑𝑋𝑉 )
10 hdmaplns1.y ( 𝜑𝑌𝑉 )
11 hdmaplns1.z ( 𝜑𝑍𝑉 )
12 1 2 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
13 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
14 eqid ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
15 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
16 1 2 3 13 14 7 8 11 hdmapcl ( 𝜑 → ( 𝑆𝑍 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
17 1 13 14 2 15 8 16 lcdvbaselfl ( 𝜑 → ( 𝑆𝑍 ) ∈ ( LFnl ‘ 𝑈 ) )
18 5 6 3 4 15 lflsub ( ( 𝑈 ∈ LMod ∧ ( 𝑆𝑍 ) ∈ ( LFnl ‘ 𝑈 ) ∧ ( 𝑋𝑉𝑌𝑉 ) ) → ( ( 𝑆𝑍 ) ‘ ( 𝑋 𝑌 ) ) = ( ( ( 𝑆𝑍 ) ‘ 𝑋 ) 𝑁 ( ( 𝑆𝑍 ) ‘ 𝑌 ) ) )
19 12 17 9 10 18 syl112anc ( 𝜑 → ( ( 𝑆𝑍 ) ‘ ( 𝑋 𝑌 ) ) = ( ( ( 𝑆𝑍 ) ‘ 𝑋 ) 𝑁 ( ( 𝑆𝑍 ) ‘ 𝑌 ) ) )