Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaplns1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmaplns1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmaplns1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmaplns1.m |
⊢ − = ( -g ‘ 𝑈 ) |
5 |
|
hdmaplns1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hdmaplns1.n |
⊢ 𝑁 = ( -g ‘ 𝑅 ) |
7 |
|
hdmaplns1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmaplns1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
hdmaplns1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
hdmaplns1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
11 |
|
hdmaplns1.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
12 |
1 2 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
13 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
15 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
16 |
1 2 3 13 14 7 8 11
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑍 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
17 |
1 13 14 2 15 8 16
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑍 ) ∈ ( LFnl ‘ 𝑈 ) ) |
18 |
5 6 3 4 15
|
lflsub |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑆 ‘ 𝑍 ) ∈ ( LFnl ‘ 𝑈 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( 𝑆 ‘ 𝑍 ) ‘ ( 𝑋 − 𝑌 ) ) = ( ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) 𝑁 ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑌 ) ) ) |
19 |
12 17 9 10 18
|
syl112anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑍 ) ‘ ( 𝑋 − 𝑌 ) ) = ( ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) 𝑁 ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑌 ) ) ) |