| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaplns1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaplns1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaplns1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmaplns1.m | ⊢  −   =  ( -g ‘ 𝑈 ) | 
						
							| 5 |  | hdmaplns1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hdmaplns1.n | ⊢ 𝑁  =  ( -g ‘ 𝑅 ) | 
						
							| 7 |  | hdmaplns1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmaplns1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | hdmaplns1.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | hdmaplns1.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 11 |  | hdmaplns1.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 12 | 1 2 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 13 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 15 |  | eqid | ⊢ ( LFnl ‘ 𝑈 )  =  ( LFnl ‘ 𝑈 ) | 
						
							| 16 | 1 2 3 13 14 7 8 11 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑍 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 17 | 1 13 14 2 15 8 16 | lcdvbaselfl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑍 )  ∈  ( LFnl ‘ 𝑈 ) ) | 
						
							| 18 | 5 6 3 4 15 | lflsub | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝑆 ‘ 𝑍 )  ∈  ( LFnl ‘ 𝑈 )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 ) )  →  ( ( 𝑆 ‘ 𝑍 ) ‘ ( 𝑋  −  𝑌 ) )  =  ( ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) 𝑁 ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑌 ) ) ) | 
						
							| 19 | 12 17 9 10 18 | syl112anc | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑍 ) ‘ ( 𝑋  −  𝑌 ) )  =  ( ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) 𝑁 ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑌 ) ) ) |