Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaplns1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmaplns1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmaplns1.v |
|- V = ( Base ` U ) |
4 |
|
hdmaplns1.m |
|- .- = ( -g ` U ) |
5 |
|
hdmaplns1.r |
|- R = ( Scalar ` U ) |
6 |
|
hdmaplns1.n |
|- N = ( -g ` R ) |
7 |
|
hdmaplns1.s |
|- S = ( ( HDMap ` K ) ` W ) |
8 |
|
hdmaplns1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
hdmaplns1.x |
|- ( ph -> X e. V ) |
10 |
|
hdmaplns1.y |
|- ( ph -> Y e. V ) |
11 |
|
hdmaplns1.z |
|- ( ph -> Z e. V ) |
12 |
1 2 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
13 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
14 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
15 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
16 |
1 2 3 13 14 7 8 11
|
hdmapcl |
|- ( ph -> ( S ` Z ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
17 |
1 13 14 2 15 8 16
|
lcdvbaselfl |
|- ( ph -> ( S ` Z ) e. ( LFnl ` U ) ) |
18 |
5 6 3 4 15
|
lflsub |
|- ( ( U e. LMod /\ ( S ` Z ) e. ( LFnl ` U ) /\ ( X e. V /\ Y e. V ) ) -> ( ( S ` Z ) ` ( X .- Y ) ) = ( ( ( S ` Z ) ` X ) N ( ( S ` Z ) ` Y ) ) ) |
19 |
12 17 9 10 18
|
syl112anc |
|- ( ph -> ( ( S ` Z ) ` ( X .- Y ) ) = ( ( ( S ` Z ) ` X ) N ( ( S ` Z ) ` Y ) ) ) |