| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaplnm1.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaplnm1.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmaplnm1.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmaplnm1.t |  |-  .x. = ( .s ` U ) | 
						
							| 5 |  | hdmaplnm1.r |  |-  R = ( Scalar ` U ) | 
						
							| 6 |  | hdmaplnm1.b |  |-  B = ( Base ` R ) | 
						
							| 7 |  | hdmaplnm1.m |  |-  .X. = ( .r ` R ) | 
						
							| 8 |  | hdmaplnm1.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 9 |  | hdmaplnm1.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 10 |  | hdmaplnm1.x |  |-  ( ph -> X e. V ) | 
						
							| 11 |  | hdmaplnm1.y |  |-  ( ph -> Y e. V ) | 
						
							| 12 |  | hdmaplnm1.a |  |-  ( ph -> A e. B ) | 
						
							| 13 | 1 2 9 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 14 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 15 |  | eqid |  |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 16 |  | eqid |  |-  ( LFnl ` U ) = ( LFnl ` U ) | 
						
							| 17 | 1 2 3 14 15 8 9 11 | hdmapcl |  |-  ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 18 | 1 14 15 2 16 9 17 | lcdvbaselfl |  |-  ( ph -> ( S ` Y ) e. ( LFnl ` U ) ) | 
						
							| 19 | 5 6 7 3 4 16 | lflmul |  |-  ( ( U e. LMod /\ ( S ` Y ) e. ( LFnl ` U ) /\ ( A e. B /\ X e. V ) ) -> ( ( S ` Y ) ` ( A .x. X ) ) = ( A .X. ( ( S ` Y ) ` X ) ) ) | 
						
							| 20 | 13 18 12 10 19 | syl112anc |  |-  ( ph -> ( ( S ` Y ) ` ( A .x. X ) ) = ( A .X. ( ( S ` Y ) ` X ) ) ) |