Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaplnm1.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmaplnm1.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmaplnm1.v |
|- V = ( Base ` U ) |
4 |
|
hdmaplnm1.t |
|- .x. = ( .s ` U ) |
5 |
|
hdmaplnm1.r |
|- R = ( Scalar ` U ) |
6 |
|
hdmaplnm1.b |
|- B = ( Base ` R ) |
7 |
|
hdmaplnm1.m |
|- .X. = ( .r ` R ) |
8 |
|
hdmaplnm1.s |
|- S = ( ( HDMap ` K ) ` W ) |
9 |
|
hdmaplnm1.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
10 |
|
hdmaplnm1.x |
|- ( ph -> X e. V ) |
11 |
|
hdmaplnm1.y |
|- ( ph -> Y e. V ) |
12 |
|
hdmaplnm1.a |
|- ( ph -> A e. B ) |
13 |
1 2 9
|
dvhlmod |
|- ( ph -> U e. LMod ) |
14 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
15 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
16 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
17 |
1 2 3 14 15 8 9 11
|
hdmapcl |
|- ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
18 |
1 14 15 2 16 9 17
|
lcdvbaselfl |
|- ( ph -> ( S ` Y ) e. ( LFnl ` U ) ) |
19 |
5 6 7 3 4 16
|
lflmul |
|- ( ( U e. LMod /\ ( S ` Y ) e. ( LFnl ` U ) /\ ( A e. B /\ X e. V ) ) -> ( ( S ` Y ) ` ( A .x. X ) ) = ( A .X. ( ( S ` Y ) ` X ) ) ) |
20 |
13 18 12 10 19
|
syl112anc |
|- ( ph -> ( ( S ` Y ) ` ( A .x. X ) ) = ( A .X. ( ( S ` Y ) ` X ) ) ) |