Metamath Proof Explorer


Theorem hdmaplnm1

Description: Multiplicative property of first (inner product) argument. (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses hdmaplnm1.h
|- H = ( LHyp ` K )
hdmaplnm1.u
|- U = ( ( DVecH ` K ) ` W )
hdmaplnm1.v
|- V = ( Base ` U )
hdmaplnm1.t
|- .x. = ( .s ` U )
hdmaplnm1.r
|- R = ( Scalar ` U )
hdmaplnm1.b
|- B = ( Base ` R )
hdmaplnm1.m
|- .X. = ( .r ` R )
hdmaplnm1.s
|- S = ( ( HDMap ` K ) ` W )
hdmaplnm1.k
|- ( ph -> ( K e. HL /\ W e. H ) )
hdmaplnm1.x
|- ( ph -> X e. V )
hdmaplnm1.y
|- ( ph -> Y e. V )
hdmaplnm1.a
|- ( ph -> A e. B )
Assertion hdmaplnm1
|- ( ph -> ( ( S ` Y ) ` ( A .x. X ) ) = ( A .X. ( ( S ` Y ) ` X ) ) )

Proof

Step Hyp Ref Expression
1 hdmaplnm1.h
 |-  H = ( LHyp ` K )
2 hdmaplnm1.u
 |-  U = ( ( DVecH ` K ) ` W )
3 hdmaplnm1.v
 |-  V = ( Base ` U )
4 hdmaplnm1.t
 |-  .x. = ( .s ` U )
5 hdmaplnm1.r
 |-  R = ( Scalar ` U )
6 hdmaplnm1.b
 |-  B = ( Base ` R )
7 hdmaplnm1.m
 |-  .X. = ( .r ` R )
8 hdmaplnm1.s
 |-  S = ( ( HDMap ` K ) ` W )
9 hdmaplnm1.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
10 hdmaplnm1.x
 |-  ( ph -> X e. V )
11 hdmaplnm1.y
 |-  ( ph -> Y e. V )
12 hdmaplnm1.a
 |-  ( ph -> A e. B )
13 1 2 9 dvhlmod
 |-  ( ph -> U e. LMod )
14 eqid
 |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W )
15 eqid
 |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) )
16 eqid
 |-  ( LFnl ` U ) = ( LFnl ` U )
17 1 2 3 14 15 8 9 11 hdmapcl
 |-  ( ph -> ( S ` Y ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) )
18 1 14 15 2 16 9 17 lcdvbaselfl
 |-  ( ph -> ( S ` Y ) e. ( LFnl ` U ) )
19 5 6 7 3 4 16 lflmul
 |-  ( ( U e. LMod /\ ( S ` Y ) e. ( LFnl ` U ) /\ ( A e. B /\ X e. V ) ) -> ( ( S ` Y ) ` ( A .x. X ) ) = ( A .X. ( ( S ` Y ) ` X ) ) )
20 13 18 12 10 19 syl112anc
 |-  ( ph -> ( ( S ` Y ) ` ( A .x. X ) ) = ( A .X. ( ( S ` Y ) ` X ) ) )