Metamath Proof Explorer


Theorem hdmaplnm1

Description: Multiplicative property of first (inner product) argument. (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses hdmaplnm1.h H=LHypK
hdmaplnm1.u U=DVecHKW
hdmaplnm1.v V=BaseU
hdmaplnm1.t ·˙=U
hdmaplnm1.r R=ScalarU
hdmaplnm1.b B=BaseR
hdmaplnm1.m ×˙=R
hdmaplnm1.s S=HDMapKW
hdmaplnm1.k φKHLWH
hdmaplnm1.x φXV
hdmaplnm1.y φYV
hdmaplnm1.a φAB
Assertion hdmaplnm1 φSYA·˙X=A×˙SYX

Proof

Step Hyp Ref Expression
1 hdmaplnm1.h H=LHypK
2 hdmaplnm1.u U=DVecHKW
3 hdmaplnm1.v V=BaseU
4 hdmaplnm1.t ·˙=U
5 hdmaplnm1.r R=ScalarU
6 hdmaplnm1.b B=BaseR
7 hdmaplnm1.m ×˙=R
8 hdmaplnm1.s S=HDMapKW
9 hdmaplnm1.k φKHLWH
10 hdmaplnm1.x φXV
11 hdmaplnm1.y φYV
12 hdmaplnm1.a φAB
13 1 2 9 dvhlmod φULMod
14 eqid LCDualKW=LCDualKW
15 eqid BaseLCDualKW=BaseLCDualKW
16 eqid LFnlU=LFnlU
17 1 2 3 14 15 8 9 11 hdmapcl φSYBaseLCDualKW
18 1 14 15 2 16 9 17 lcdvbaselfl φSYLFnlU
19 5 6 7 3 4 16 lflmul ULModSYLFnlUABXVSYA·˙X=A×˙SYX
20 13 18 12 10 19 syl112anc φSYA·˙X=A×˙SYX