Metamath Proof Explorer


Theorem hdmaplnm1

Description: Multiplicative property of first (inner product) argument. (Contributed by NM, 11-Jun-2015)

Ref Expression
Hypotheses hdmaplnm1.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmaplnm1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmaplnm1.v 𝑉 = ( Base ‘ 𝑈 )
hdmaplnm1.t · = ( ·𝑠𝑈 )
hdmaplnm1.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmaplnm1.b 𝐵 = ( Base ‘ 𝑅 )
hdmaplnm1.m × = ( .r𝑅 )
hdmaplnm1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmaplnm1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmaplnm1.x ( 𝜑𝑋𝑉 )
hdmaplnm1.y ( 𝜑𝑌𝑉 )
hdmaplnm1.a ( 𝜑𝐴𝐵 )
Assertion hdmaplnm1 ( 𝜑 → ( ( 𝑆𝑌 ) ‘ ( 𝐴 · 𝑋 ) ) = ( 𝐴 × ( ( 𝑆𝑌 ) ‘ 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 hdmaplnm1.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmaplnm1.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmaplnm1.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmaplnm1.t · = ( ·𝑠𝑈 )
5 hdmaplnm1.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hdmaplnm1.b 𝐵 = ( Base ‘ 𝑅 )
7 hdmaplnm1.m × = ( .r𝑅 )
8 hdmaplnm1.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
9 hdmaplnm1.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
10 hdmaplnm1.x ( 𝜑𝑋𝑉 )
11 hdmaplnm1.y ( 𝜑𝑌𝑉 )
12 hdmaplnm1.a ( 𝜑𝐴𝐵 )
13 1 2 9 dvhlmod ( 𝜑𝑈 ∈ LMod )
14 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
15 eqid ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
16 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
17 1 2 3 14 15 8 9 11 hdmapcl ( 𝜑 → ( 𝑆𝑌 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
18 1 14 15 2 16 9 17 lcdvbaselfl ( 𝜑 → ( 𝑆𝑌 ) ∈ ( LFnl ‘ 𝑈 ) )
19 5 6 7 3 4 16 lflmul ( ( 𝑈 ∈ LMod ∧ ( 𝑆𝑌 ) ∈ ( LFnl ‘ 𝑈 ) ∧ ( 𝐴𝐵𝑋𝑉 ) ) → ( ( 𝑆𝑌 ) ‘ ( 𝐴 · 𝑋 ) ) = ( 𝐴 × ( ( 𝑆𝑌 ) ‘ 𝑋 ) ) )
20 13 18 12 10 19 syl112anc ( 𝜑 → ( ( 𝑆𝑌 ) ‘ ( 𝐴 · 𝑋 ) ) = ( 𝐴 × ( ( 𝑆𝑌 ) ‘ 𝑋 ) ) )