Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaplnm1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmaplnm1.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmaplnm1.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmaplnm1.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hdmaplnm1.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hdmaplnm1.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
hdmaplnm1.m |
⊢ × = ( .r ‘ 𝑅 ) |
8 |
|
hdmaplnm1.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmaplnm1.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
hdmaplnm1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
11 |
|
hdmaplnm1.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
12 |
|
hdmaplnm1.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
13 |
1 2 9
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
14 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
16 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
17 |
1 2 3 14 15 8 9 11
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑌 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
18 |
1 14 15 2 16 9 17
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑌 ) ∈ ( LFnl ‘ 𝑈 ) ) |
19 |
5 6 7 3 4 16
|
lflmul |
⊢ ( ( 𝑈 ∈ LMod ∧ ( 𝑆 ‘ 𝑌 ) ∈ ( LFnl ‘ 𝑈 ) ∧ ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐴 · 𝑋 ) ) = ( 𝐴 × ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) ) |
20 |
13 18 12 10 19
|
syl112anc |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐴 · 𝑋 ) ) = ( 𝐴 × ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) ) |