| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaplnm1.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaplnm1.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaplnm1.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmaplnm1.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmaplnm1.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hdmaplnm1.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | hdmaplnm1.m | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | hdmaplnm1.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmaplnm1.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 10 |  | hdmaplnm1.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 11 |  | hdmaplnm1.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 12 |  | hdmaplnm1.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 13 | 1 2 9 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 14 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 16 |  | eqid | ⊢ ( LFnl ‘ 𝑈 )  =  ( LFnl ‘ 𝑈 ) | 
						
							| 17 | 1 2 3 14 15 8 9 11 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑌 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 18 | 1 14 15 2 16 9 17 | lcdvbaselfl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑌 )  ∈  ( LFnl ‘ 𝑈 ) ) | 
						
							| 19 | 5 6 7 3 4 16 | lflmul | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝑆 ‘ 𝑌 )  ∈  ( LFnl ‘ 𝑈 )  ∧  ( 𝐴  ∈  𝐵  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐴  ·  𝑋 ) )  =  ( 𝐴  ×  ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) ) | 
						
							| 20 | 13 18 12 10 19 | syl112anc | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑌 ) ‘ ( 𝐴  ·  𝑋 ) )  =  ( 𝐴  ×  ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ) ) |