| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hdmaplna2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 2 |
|
hdmaplna2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 3 |
|
hdmaplna2.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
| 4 |
|
hdmaplna2.p |
⊢ + = ( +g ‘ 𝑈 ) |
| 5 |
|
hdmaplna2.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
| 6 |
|
hdmaplna2.q |
⊢ ⨣ = ( +g ‘ 𝑅 ) |
| 7 |
|
hdmaplna2.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
| 8 |
|
hdmaplna2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 9 |
|
hdmaplna2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 10 |
|
hdmaplna2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 11 |
|
hdmaplna2.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 12 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
| 13 |
|
eqid |
⊢ ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 14 |
1 2 3 4 12 13 7 8 10 11
|
hdmapadd |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝑌 + 𝑍 ) ) = ( ( 𝑆 ‘ 𝑌 ) ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑍 ) ) ) |
| 15 |
14
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝑌 + 𝑍 ) ) ‘ 𝑋 ) = ( ( ( 𝑆 ‘ 𝑌 ) ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑍 ) ) ‘ 𝑋 ) ) |
| 16 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 17 |
1 2 3 12 16 7 8 10
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑌 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 18 |
1 2 3 12 16 7 8 11
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑍 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 19 |
1 2 3 5 6 12 16 13 8 17 18 9
|
lcdvaddval |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑌 ) ( +g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑍 ) ) ‘ 𝑋 ) = ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ⨣ ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) ) ) |
| 20 |
15 19
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝑌 + 𝑍 ) ) ‘ 𝑋 ) = ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) ⨣ ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) ) ) |