| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapglnm2.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapglnm2.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmapglnm2.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmapglnm2.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 5 |  | hdmapglnm2.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hdmapglnm2.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 7 |  | hdmapglnm2.m | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 8 |  | hdmapglnm2.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 9 |  | hdmapglnm2.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 10 |  | hdmapglnm2.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 11 |  | hdmapglnm2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 12 |  | hdmapglnm2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 13 |  | hdmapglnm2.z | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 14 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 15 |  | eqid | ⊢ (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 16 | 1 2 3 4 5 6 14 15 8 9 10 12 13 | hgmapvs | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 𝐴  ·  𝑌 ) )  =  ( ( 𝐺 ‘ 𝐴 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑌 ) ) ) | 
						
							| 17 | 16 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐴  ·  𝑌 ) ) ‘ 𝑋 )  =  ( ( ( 𝐺 ‘ 𝐴 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑌 ) ) ‘ 𝑋 ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 19 | 1 2 5 6 9 10 13 | hgmapcl | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝐴 )  ∈  𝐵 ) | 
						
							| 20 | 1 2 3 14 18 8 10 12 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑌 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 21 | 1 2 3 5 6 7 14 18 15 10 19 20 11 | lcdvsval | ⊢ ( 𝜑  →  ( ( ( 𝐺 ‘ 𝐴 ) (  ·𝑠  ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑌 ) ) ‘ 𝑋 )  =  ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 )  ×  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 22 | 17 21 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐴  ·  𝑌 ) ) ‘ 𝑋 )  =  ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 )  ×  ( 𝐺 ‘ 𝐴 ) ) ) |