Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapglnm2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapglnm2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmapglnm2.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmapglnm2.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
5 |
|
hdmapglnm2.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hdmapglnm2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
7 |
|
hdmapglnm2.m |
⊢ × = ( .r ‘ 𝑅 ) |
8 |
|
hdmapglnm2.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
9 |
|
hdmapglnm2.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
10 |
|
hdmapglnm2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
hdmapglnm2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
12 |
|
hdmapglnm2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
13 |
|
hdmapglnm2.z |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
14 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
16 |
1 2 3 4 5 6 14 15 8 9 10 12 13
|
hgmapvs |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐴 · 𝑌 ) ) = ( ( 𝐺 ‘ 𝐴 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑌 ) ) ) |
17 |
16
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐴 · 𝑌 ) ) ‘ 𝑋 ) = ( ( ( 𝐺 ‘ 𝐴 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑌 ) ) ‘ 𝑋 ) ) |
18 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
19 |
1 2 5 6 9 10 13
|
hgmapcl |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝐴 ) ∈ 𝐵 ) |
20 |
1 2 3 14 18 8 10 12
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑌 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
21 |
1 2 3 5 6 7 14 18 15 10 19 20 11
|
lcdvsval |
⊢ ( 𝜑 → ( ( ( 𝐺 ‘ 𝐴 ) ( ·𝑠 ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ( 𝑆 ‘ 𝑌 ) ) ‘ 𝑋 ) = ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) × ( 𝐺 ‘ 𝐴 ) ) ) |
22 |
17 21
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐴 · 𝑌 ) ) ‘ 𝑋 ) = ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) × ( 𝐺 ‘ 𝐴 ) ) ) |