Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapgln2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapgln2.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmapgln2.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
4 |
|
hdmapgln2.p |
⊢ + = ( +g ‘ 𝑈 ) |
5 |
|
hdmapgln2.t |
⊢ · = ( ·𝑠 ‘ 𝑈 ) |
6 |
|
hdmapgln2.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
7 |
|
hdmapgln2.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
8 |
|
hdmapgln2.q |
⊢ ⨣ = ( +g ‘ 𝑅 ) |
9 |
|
hdmapgln2.m |
⊢ × = ( .r ‘ 𝑅 ) |
10 |
|
hdmapgln2.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
11 |
|
hdmapgln2.g |
⊢ 𝐺 = ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
hdmapgln2.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
13 |
|
hdmapgln2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
14 |
|
hdmapgln2.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
15 |
|
hdmapgln2.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
16 |
|
hdmapgln2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) |
17 |
1 2 12
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
18 |
3 6 5 7
|
lmodvscl |
⊢ ( ( 𝑈 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
19 |
17 16 14 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 · 𝑌 ) ∈ 𝑉 ) |
20 |
1 2 3 4 6 8 10 12 13 19 15
|
hdmaplna2 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝐴 · 𝑌 ) + 𝑍 ) ) ‘ 𝑋 ) = ( ( ( 𝑆 ‘ ( 𝐴 · 𝑌 ) ) ‘ 𝑋 ) ⨣ ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) ) ) |
21 |
1 2 3 5 6 7 9 10 11 12 13 14 16
|
hdmapglnm2 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( 𝐴 · 𝑌 ) ) ‘ 𝑋 ) = ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) × ( 𝐺 ‘ 𝐴 ) ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ ( 𝐴 · 𝑌 ) ) ‘ 𝑋 ) ⨣ ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) ) = ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) × ( 𝐺 ‘ 𝐴 ) ) ⨣ ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) ) ) |
23 |
20 22
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 ‘ ( ( 𝐴 · 𝑌 ) + 𝑍 ) ) ‘ 𝑋 ) = ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 ) × ( 𝐺 ‘ 𝐴 ) ) ⨣ ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) ) ) |