| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapgln2.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapgln2.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmapgln2.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmapgln2.p | ⊢  +   =  ( +g ‘ 𝑈 ) | 
						
							| 5 |  | hdmapgln2.t | ⊢  ·   =  (  ·𝑠  ‘ 𝑈 ) | 
						
							| 6 |  | hdmapgln2.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 7 |  | hdmapgln2.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 8 |  | hdmapgln2.q | ⊢  ⨣   =  ( +g ‘ 𝑅 ) | 
						
							| 9 |  | hdmapgln2.m | ⊢  ×   =  ( .r ‘ 𝑅 ) | 
						
							| 10 |  | hdmapgln2.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 |  | hdmapgln2.g | ⊢ 𝐺  =  ( ( HGMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 12 |  | hdmapgln2.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 13 |  | hdmapgln2.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 14 |  | hdmapgln2.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 15 |  | hdmapgln2.z | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 16 |  | hdmapgln2.a | ⊢ ( 𝜑  →  𝐴  ∈  𝐵 ) | 
						
							| 17 | 1 2 12 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 18 | 3 6 5 7 | lmodvscl | ⊢ ( ( 𝑈  ∈  LMod  ∧  𝐴  ∈  𝐵  ∧  𝑌  ∈  𝑉 )  →  ( 𝐴  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 19 | 17 16 14 18 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ·  𝑌 )  ∈  𝑉 ) | 
						
							| 20 | 1 2 3 4 6 8 10 12 13 19 15 | hdmaplna2 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( ( 𝐴  ·  𝑌 )  +  𝑍 ) ) ‘ 𝑋 )  =  ( ( ( 𝑆 ‘ ( 𝐴  ·  𝑌 ) ) ‘ 𝑋 )  ⨣  ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) ) ) | 
						
							| 21 | 1 2 3 5 6 7 9 10 11 12 13 14 16 | hdmapglnm2 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( 𝐴  ·  𝑌 ) ) ‘ 𝑋 )  =  ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 )  ×  ( 𝐺 ‘ 𝐴 ) ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ ( 𝐴  ·  𝑌 ) ) ‘ 𝑋 )  ⨣  ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) )  =  ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 )  ×  ( 𝐺 ‘ 𝐴 ) )  ⨣  ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) ) ) | 
						
							| 23 | 20 22 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ ( ( 𝐴  ·  𝑌 )  +  𝑍 ) ) ‘ 𝑋 )  =  ( ( ( ( 𝑆 ‘ 𝑌 ) ‘ 𝑋 )  ×  ( 𝐺 ‘ 𝐴 ) )  ⨣  ( ( 𝑆 ‘ 𝑍 ) ‘ 𝑋 ) ) ) |