Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaplkr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmaplkr.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmaplkr.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmaplkr.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
hdmaplkr.f |
⊢ 𝐹 = ( LFnl ‘ 𝑈 ) |
6 |
|
hdmaplkr.y |
⊢ 𝑌 = ( LKer ‘ 𝑈 ) |
7 |
|
hdmaplkr.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmaplkr.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
hdmaplkr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
fveq2 |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( 𝑆 ‘ 𝑋 ) = ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) = ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) ) |
12 |
|
sneq |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → { 𝑋 } = { ( 0g ‘ 𝑈 ) } ) |
13 |
12
|
fveq2d |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( 𝑂 ‘ { 𝑋 } ) = ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) ) |
14 |
11 13
|
sseq12d |
⊢ ( 𝑋 = ( 0g ‘ 𝑈 ) → ( ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) ↔ ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) ⊆ ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) ) ) |
15 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
16 |
1 15 8
|
lcdlmod |
⊢ ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ) |
17 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
18 |
1 3 4 15 17 7 8 9
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
19 |
|
eqid |
⊢ ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
20 |
17 19
|
lspsnid |
⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑆 ‘ 𝑋 ) ∈ ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) |
21 |
16 18 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) |
22 |
|
eqid |
⊢ ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 ) |
23 |
|
eqid |
⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) |
24 |
1 3 4 22 15 19 23 7 8 9
|
hdmap10 |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) |
25 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
26 |
1 2 23 3 4 22 25 6 8 9
|
mapdsn |
⊢ ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) } ) |
27 |
24 26
|
eqtr3d |
⊢ ( 𝜑 → ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) } ) |
28 |
21 27
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) } ) |
29 |
1 15 17 3 25 8 18
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ) |
30 |
|
fveq2 |
⊢ ( 𝑓 = ( 𝑆 ‘ 𝑋 ) → ( 𝑌 ‘ 𝑓 ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
31 |
30
|
sseq2d |
⊢ ( 𝑓 = ( 𝑆 ‘ 𝑋 ) → ( ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) |
32 |
31
|
elrab3 |
⊢ ( ( 𝑆 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) → ( ( 𝑆 ‘ 𝑋 ) ∈ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) } ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) |
33 |
29 32
|
syl |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ∈ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ 𝑓 ) } ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) |
34 |
28 33
|
mpbid |
⊢ ( 𝜑 → ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
36 |
|
eqid |
⊢ ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 ) |
37 |
1 3 8
|
dvhlvec |
⊢ ( 𝜑 → 𝑈 ∈ LVec ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑈 ∈ LVec ) |
39 |
|
eqid |
⊢ ( 0g ‘ 𝑈 ) = ( 0g ‘ 𝑈 ) |
40 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
41 |
9
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) ) |
42 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ↔ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) ) |
43 |
41 42
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → 𝑋 ∈ ( 𝑉 ∖ { ( 0g ‘ 𝑈 ) } ) ) |
44 |
1 2 3 4 39 36 40 43
|
dochsnshp |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑂 ‘ { 𝑋 } ) ∈ ( LSHyp ‘ 𝑈 ) ) |
45 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑆 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ) |
46 |
|
eqid |
⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) |
47 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) ) |
48 |
|
eqid |
⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
49 |
1 3 4 46 47 15 48 8
|
lcd0v |
⊢ ( 𝜑 → ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) |
50 |
49
|
eqeq2d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ( 𝑆 ‘ 𝑋 ) = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) |
51 |
1 3 4 39 15 48 7 8 9
|
hdmapeq0 |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑋 = ( 0g ‘ 𝑈 ) ) ) |
52 |
50 51
|
bitr3d |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ↔ 𝑋 = ( 0g ‘ 𝑈 ) ) ) |
53 |
52
|
necon3bid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑋 ) ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ↔ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) ) |
54 |
53
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑆 ‘ 𝑋 ) ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) |
55 |
4 46 47 36 25 6
|
lkrshp |
⊢ ( ( 𝑈 ∈ LVec ∧ ( 𝑆 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ∧ ( 𝑆 ‘ 𝑋 ) ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) |
56 |
38 45 54 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ∈ ( LSHyp ‘ 𝑈 ) ) |
57 |
36 38 44 56
|
lshpcmp |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ↔ ( 𝑂 ‘ { 𝑋 } ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) |
58 |
35 57
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑂 ‘ { 𝑋 } ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) |
59 |
|
eqimss2 |
⊢ ( ( 𝑂 ‘ { 𝑋 } ) = ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) ) |
60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ( 0g ‘ 𝑈 ) ) → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) ) |
61 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
62 |
4 39
|
lmod0vcl |
⊢ ( 𝑈 ∈ LMod → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
63 |
61 62
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑈 ) ∈ 𝑉 ) |
64 |
1 3 4 15 17 7 8 63
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
65 |
1 15 17 3 25 8 64
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ∈ ( LFnl ‘ 𝑈 ) ) |
66 |
4 25 6 61 65
|
lkrssv |
⊢ ( 𝜑 → ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) ⊆ 𝑉 ) |
67 |
1 3 2 4 39
|
doch0 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
68 |
8 67
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) = 𝑉 ) |
69 |
66 68
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) ⊆ ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) ) |
70 |
14 60 69
|
pm2.61ne |
⊢ ( 𝜑 → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) ) |
71 |
70 34
|
eqssd |
⊢ ( 𝜑 → ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) = ( 𝑂 ‘ { 𝑋 } ) ) |