Metamath Proof Explorer


Theorem hdmaplkr

Description: Kernel of the vector to dual map. Line 16 in Holland95 p. 14. TODO: eliminate F hypothesis. (Contributed by NM, 9-Jun-2015)

Ref Expression
Hypotheses hdmaplkr.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmaplkr.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
hdmaplkr.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmaplkr.v 𝑉 = ( Base ‘ 𝑈 )
hdmaplkr.f 𝐹 = ( LFnl ‘ 𝑈 )
hdmaplkr.y 𝑌 = ( LKer ‘ 𝑈 )
hdmaplkr.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmaplkr.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmaplkr.x ( 𝜑𝑋𝑉 )
Assertion hdmaplkr ( 𝜑 → ( 𝑌 ‘ ( 𝑆𝑋 ) ) = ( 𝑂 ‘ { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 hdmaplkr.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmaplkr.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmaplkr.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 hdmaplkr.v 𝑉 = ( Base ‘ 𝑈 )
5 hdmaplkr.f 𝐹 = ( LFnl ‘ 𝑈 )
6 hdmaplkr.y 𝑌 = ( LKer ‘ 𝑈 )
7 hdmaplkr.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
8 hdmaplkr.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 hdmaplkr.x ( 𝜑𝑋𝑉 )
10 fveq2 ( 𝑋 = ( 0g𝑈 ) → ( 𝑆𝑋 ) = ( 𝑆 ‘ ( 0g𝑈 ) ) )
11 10 fveq2d ( 𝑋 = ( 0g𝑈 ) → ( 𝑌 ‘ ( 𝑆𝑋 ) ) = ( 𝑌 ‘ ( 𝑆 ‘ ( 0g𝑈 ) ) ) )
12 sneq ( 𝑋 = ( 0g𝑈 ) → { 𝑋 } = { ( 0g𝑈 ) } )
13 12 fveq2d ( 𝑋 = ( 0g𝑈 ) → ( 𝑂 ‘ { 𝑋 } ) = ( 𝑂 ‘ { ( 0g𝑈 ) } ) )
14 11 13 sseq12d ( 𝑋 = ( 0g𝑈 ) → ( ( 𝑌 ‘ ( 𝑆𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) ↔ ( 𝑌 ‘ ( 𝑆 ‘ ( 0g𝑈 ) ) ) ⊆ ( 𝑂 ‘ { ( 0g𝑈 ) } ) ) )
15 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
16 1 15 8 lcdlmod ( 𝜑 → ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod )
17 eqid ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
18 1 3 4 15 17 7 8 9 hdmapcl ( 𝜑 → ( 𝑆𝑋 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
19 eqid ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
20 17 19 lspsnid ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ∈ LMod ∧ ( 𝑆𝑋 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( 𝑆𝑋 ) ∈ ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆𝑋 ) } ) )
21 16 18 20 syl2anc ( 𝜑 → ( 𝑆𝑋 ) ∈ ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆𝑋 ) } ) )
22 eqid ( LSpan ‘ 𝑈 ) = ( LSpan ‘ 𝑈 )
23 eqid ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
24 1 3 4 22 15 19 23 7 8 9 hdmap10 ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆𝑋 ) } ) )
25 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
26 1 2 23 3 4 22 25 6 8 9 mapdsn ( 𝜑 → ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) ) = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌𝑓 ) } )
27 24 26 eqtr3d ( 𝜑 → ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆𝑋 ) } ) = { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌𝑓 ) } )
28 21 27 eleqtrd ( 𝜑 → ( 𝑆𝑋 ) ∈ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌𝑓 ) } )
29 1 15 17 3 25 8 18 lcdvbaselfl ( 𝜑 → ( 𝑆𝑋 ) ∈ ( LFnl ‘ 𝑈 ) )
30 fveq2 ( 𝑓 = ( 𝑆𝑋 ) → ( 𝑌𝑓 ) = ( 𝑌 ‘ ( 𝑆𝑋 ) ) )
31 30 sseq2d ( 𝑓 = ( 𝑆𝑋 ) → ( ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌𝑓 ) ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆𝑋 ) ) ) )
32 31 elrab3 ( ( 𝑆𝑋 ) ∈ ( LFnl ‘ 𝑈 ) → ( ( 𝑆𝑋 ) ∈ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌𝑓 ) } ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆𝑋 ) ) ) )
33 29 32 syl ( 𝜑 → ( ( 𝑆𝑋 ) ∈ { 𝑓 ∈ ( LFnl ‘ 𝑈 ) ∣ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌𝑓 ) } ↔ ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆𝑋 ) ) ) )
34 28 33 mpbid ( 𝜑 → ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆𝑋 ) ) )
35 34 adantr ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆𝑋 ) ) )
36 eqid ( LSHyp ‘ 𝑈 ) = ( LSHyp ‘ 𝑈 )
37 1 3 8 dvhlvec ( 𝜑𝑈 ∈ LVec )
38 37 adantr ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → 𝑈 ∈ LVec )
39 eqid ( 0g𝑈 ) = ( 0g𝑈 )
40 8 adantr ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
41 9 anim1i ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → ( 𝑋𝑉𝑋 ≠ ( 0g𝑈 ) ) )
42 eldifsn ( 𝑋 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) ↔ ( 𝑋𝑉𝑋 ≠ ( 0g𝑈 ) ) )
43 41 42 sylibr ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → 𝑋 ∈ ( 𝑉 ∖ { ( 0g𝑈 ) } ) )
44 1 2 3 4 39 36 40 43 dochsnshp ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → ( 𝑂 ‘ { 𝑋 } ) ∈ ( LSHyp ‘ 𝑈 ) )
45 29 adantr ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → ( 𝑆𝑋 ) ∈ ( LFnl ‘ 𝑈 ) )
46 eqid ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 )
47 eqid ( 0g ‘ ( Scalar ‘ 𝑈 ) ) = ( 0g ‘ ( Scalar ‘ 𝑈 ) )
48 eqid ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
49 1 3 4 46 47 15 48 8 lcd0v ( 𝜑 → ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )
50 49 eqeq2d ( 𝜑 → ( ( 𝑆𝑋 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ ( 𝑆𝑋 ) = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) )
51 1 3 4 39 15 48 7 8 9 hdmapeq0 ( 𝜑 → ( ( 𝑆𝑋 ) = ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ↔ 𝑋 = ( 0g𝑈 ) ) )
52 50 51 bitr3d ( 𝜑 → ( ( 𝑆𝑋 ) = ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ↔ 𝑋 = ( 0g𝑈 ) ) )
53 52 necon3bid ( 𝜑 → ( ( 𝑆𝑋 ) ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ↔ 𝑋 ≠ ( 0g𝑈 ) ) )
54 53 biimpar ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → ( 𝑆𝑋 ) ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )
55 4 46 47 36 25 6 lkrshp ( ( 𝑈 ∈ LVec ∧ ( 𝑆𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ∧ ( 𝑆𝑋 ) ≠ ( 𝑉 × { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) → ( 𝑌 ‘ ( 𝑆𝑋 ) ) ∈ ( LSHyp ‘ 𝑈 ) )
56 38 45 54 55 syl3anc ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → ( 𝑌 ‘ ( 𝑆𝑋 ) ) ∈ ( LSHyp ‘ 𝑈 ) )
57 36 38 44 56 lshpcmp ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → ( ( 𝑂 ‘ { 𝑋 } ) ⊆ ( 𝑌 ‘ ( 𝑆𝑋 ) ) ↔ ( 𝑂 ‘ { 𝑋 } ) = ( 𝑌 ‘ ( 𝑆𝑋 ) ) ) )
58 35 57 mpbid ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → ( 𝑂 ‘ { 𝑋 } ) = ( 𝑌 ‘ ( 𝑆𝑋 ) ) )
59 eqimss2 ( ( 𝑂 ‘ { 𝑋 } ) = ( 𝑌 ‘ ( 𝑆𝑋 ) ) → ( 𝑌 ‘ ( 𝑆𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) )
60 58 59 syl ( ( 𝜑𝑋 ≠ ( 0g𝑈 ) ) → ( 𝑌 ‘ ( 𝑆𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) )
61 1 3 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
62 4 39 lmod0vcl ( 𝑈 ∈ LMod → ( 0g𝑈 ) ∈ 𝑉 )
63 61 62 syl ( 𝜑 → ( 0g𝑈 ) ∈ 𝑉 )
64 1 3 4 15 17 7 8 63 hdmapcl ( 𝜑 → ( 𝑆 ‘ ( 0g𝑈 ) ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
65 1 15 17 3 25 8 64 lcdvbaselfl ( 𝜑 → ( 𝑆 ‘ ( 0g𝑈 ) ) ∈ ( LFnl ‘ 𝑈 ) )
66 4 25 6 61 65 lkrssv ( 𝜑 → ( 𝑌 ‘ ( 𝑆 ‘ ( 0g𝑈 ) ) ) ⊆ 𝑉 )
67 1 3 2 4 39 doch0 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝑂 ‘ { ( 0g𝑈 ) } ) = 𝑉 )
68 8 67 syl ( 𝜑 → ( 𝑂 ‘ { ( 0g𝑈 ) } ) = 𝑉 )
69 66 68 sseqtrrd ( 𝜑 → ( 𝑌 ‘ ( 𝑆 ‘ ( 0g𝑈 ) ) ) ⊆ ( 𝑂 ‘ { ( 0g𝑈 ) } ) )
70 14 60 69 pm2.61ne ( 𝜑 → ( 𝑌 ‘ ( 𝑆𝑋 ) ) ⊆ ( 𝑂 ‘ { 𝑋 } ) )
71 70 34 eqssd ( 𝜑 → ( 𝑌 ‘ ( 𝑆𝑋 ) ) = ( 𝑂 ‘ { 𝑋 } ) )