| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaplkr.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmaplkr.o | ⊢ 𝑂  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmaplkr.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 4 |  | hdmaplkr.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 5 |  | hdmaplkr.f | ⊢ 𝐹  =  ( LFnl ‘ 𝑈 ) | 
						
							| 6 |  | hdmaplkr.y | ⊢ 𝑌  =  ( LKer ‘ 𝑈 ) | 
						
							| 7 |  | hdmaplkr.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmaplkr.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | hdmaplkr.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑋  =  ( 0g ‘ 𝑈 )  →  ( 𝑆 ‘ 𝑋 )  =  ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑋  =  ( 0g ‘ 𝑈 )  →  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) )  =  ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) ) ) | 
						
							| 12 |  | sneq | ⊢ ( 𝑋  =  ( 0g ‘ 𝑈 )  →  { 𝑋 }  =  { ( 0g ‘ 𝑈 ) } ) | 
						
							| 13 | 12 | fveq2d | ⊢ ( 𝑋  =  ( 0g ‘ 𝑈 )  →  ( 𝑂 ‘ { 𝑋 } )  =  ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 14 | 11 13 | sseq12d | ⊢ ( 𝑋  =  ( 0g ‘ 𝑈 )  →  ( ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) )  ⊆  ( 𝑂 ‘ { 𝑋 } )  ↔  ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) )  ⊆  ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 16 | 1 15 8 | lcdlmod | ⊢ ( 𝜑  →  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LMod ) | 
						
							| 17 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 18 | 1 3 4 15 17 7 8 9 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 19 |  | eqid | ⊢ ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 20 | 17 19 | lspsnid | ⊢ ( ( ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  ∈  LMod  ∧  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )  →  ( 𝑆 ‘ 𝑋 )  ∈  ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) | 
						
							| 21 | 16 18 20 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) | 
						
							| 22 |  | eqid | ⊢ ( LSpan ‘ 𝑈 )  =  ( LSpan ‘ 𝑈 ) | 
						
							| 23 |  | eqid | ⊢ ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 24 | 1 3 4 22 15 19 23 7 8 9 | hdmap10 | ⊢ ( 𝜑  →  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) )  =  ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } ) ) | 
						
							| 25 |  | eqid | ⊢ ( LFnl ‘ 𝑈 )  =  ( LFnl ‘ 𝑈 ) | 
						
							| 26 | 1 2 23 3 4 22 25 6 8 9 | mapdsn | ⊢ ( 𝜑  →  ( ( ( mapd ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( LSpan ‘ 𝑈 ) ‘ { 𝑋 } ) )  =  { 𝑓  ∈  ( LFnl ‘ 𝑈 )  ∣  ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ 𝑓 ) } ) | 
						
							| 27 | 24 26 | eqtr3d | ⊢ ( 𝜑  →  ( ( LSpan ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ‘ { ( 𝑆 ‘ 𝑋 ) } )  =  { 𝑓  ∈  ( LFnl ‘ 𝑈 )  ∣  ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ 𝑓 ) } ) | 
						
							| 28 | 21 27 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  { 𝑓  ∈  ( LFnl ‘ 𝑈 )  ∣  ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ 𝑓 ) } ) | 
						
							| 29 | 1 15 17 3 25 8 18 | lcdvbaselfl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( LFnl ‘ 𝑈 ) ) | 
						
							| 30 |  | fveq2 | ⊢ ( 𝑓  =  ( 𝑆 ‘ 𝑋 )  →  ( 𝑌 ‘ 𝑓 )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 31 | 30 | sseq2d | ⊢ ( 𝑓  =  ( 𝑆 ‘ 𝑋 )  →  ( ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ 𝑓 )  ↔  ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 32 | 31 | elrab3 | ⊢ ( ( 𝑆 ‘ 𝑋 )  ∈  ( LFnl ‘ 𝑈 )  →  ( ( 𝑆 ‘ 𝑋 )  ∈  { 𝑓  ∈  ( LFnl ‘ 𝑈 )  ∣  ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ 𝑓 ) }  ↔  ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 33 | 29 32 | syl | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 )  ∈  { 𝑓  ∈  ( LFnl ‘ 𝑈 )  ∣  ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ 𝑓 ) }  ↔  ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 34 | 28 33 | mpbid | ⊢ ( 𝜑  →  ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 36 |  | eqid | ⊢ ( LSHyp ‘ 𝑈 )  =  ( LSHyp ‘ 𝑈 ) | 
						
							| 37 | 1 3 8 | dvhlvec | ⊢ ( 𝜑  →  𝑈  ∈  LVec ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  𝑈  ∈  LVec ) | 
						
							| 39 |  | eqid | ⊢ ( 0g ‘ 𝑈 )  =  ( 0g ‘ 𝑈 ) | 
						
							| 40 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 41 | 9 | anim1i | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑋  ∈  𝑉  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 42 |  | eldifsn | ⊢ ( 𝑋  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } )  ↔  ( 𝑋  ∈  𝑉  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 43 | 41 42 | sylibr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  𝑋  ∈  ( 𝑉  ∖  { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 44 | 1 2 3 4 39 36 40 43 | dochsnshp | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑂 ‘ { 𝑋 } )  ∈  ( LSHyp ‘ 𝑈 ) ) | 
						
							| 45 | 29 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑆 ‘ 𝑋 )  ∈  ( LFnl ‘ 𝑈 ) ) | 
						
							| 46 |  | eqid | ⊢ ( Scalar ‘ 𝑈 )  =  ( Scalar ‘ 𝑈 ) | 
						
							| 47 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑈 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑈 ) ) | 
						
							| 48 |  | eqid | ⊢ ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 49 | 1 3 4 46 47 15 48 8 | lcd0v | ⊢ ( 𝜑  →  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( 𝑉  ×  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) | 
						
							| 50 | 49 | eqeq2d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  ( 𝑆 ‘ 𝑋 )  =  ( 𝑉  ×  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) ) | 
						
							| 51 | 1 3 4 39 15 48 7 8 9 | hdmapeq0 | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 )  =  ( 0g ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  ↔  𝑋  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 52 | 50 51 | bitr3d | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 )  =  ( 𝑉  ×  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ↔  𝑋  =  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 53 | 52 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 )  ≠  ( 𝑉  ×  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } )  ↔  𝑋  ≠  ( 0g ‘ 𝑈 ) ) ) | 
						
							| 54 | 53 | biimpar | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑆 ‘ 𝑋 )  ≠  ( 𝑉  ×  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) ) | 
						
							| 55 | 4 46 47 36 25 6 | lkrshp | ⊢ ( ( 𝑈  ∈  LVec  ∧  ( 𝑆 ‘ 𝑋 )  ∈  ( LFnl ‘ 𝑈 )  ∧  ( 𝑆 ‘ 𝑋 )  ≠  ( 𝑉  ×  { ( 0g ‘ ( Scalar ‘ 𝑈 ) ) } ) )  →  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) )  ∈  ( LSHyp ‘ 𝑈 ) ) | 
						
							| 56 | 38 45 54 55 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) )  ∈  ( LSHyp ‘ 𝑈 ) ) | 
						
							| 57 | 36 38 44 56 | lshpcmp | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  ( ( 𝑂 ‘ { 𝑋 } )  ⊆  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) )  ↔  ( 𝑂 ‘ { 𝑋 } )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) ) | 
						
							| 58 | 35 57 | mpbid | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑂 ‘ { 𝑋 } )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 59 |  | eqimss2 | ⊢ ( ( 𝑂 ‘ { 𝑋 } )  =  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) )  →  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) )  ⊆  ( 𝑂 ‘ { 𝑋 } ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ( 0g ‘ 𝑈 ) )  →  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) )  ⊆  ( 𝑂 ‘ { 𝑋 } ) ) | 
						
							| 61 | 1 3 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 62 | 4 39 | lmod0vcl | ⊢ ( 𝑈  ∈  LMod  →  ( 0g ‘ 𝑈 )  ∈  𝑉 ) | 
						
							| 63 | 61 62 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑈 )  ∈  𝑉 ) | 
						
							| 64 | 1 3 4 15 17 7 8 63 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 0g ‘ 𝑈 ) )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 65 | 1 15 17 3 25 8 64 | lcdvbaselfl | ⊢ ( 𝜑  →  ( 𝑆 ‘ ( 0g ‘ 𝑈 ) )  ∈  ( LFnl ‘ 𝑈 ) ) | 
						
							| 66 | 4 25 6 61 65 | lkrssv | ⊢ ( 𝜑  →  ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) )  ⊆  𝑉 ) | 
						
							| 67 | 1 3 2 4 39 | doch0 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  →  ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } )  =  𝑉 ) | 
						
							| 68 | 8 67 | syl | ⊢ ( 𝜑  →  ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } )  =  𝑉 ) | 
						
							| 69 | 66 68 | sseqtrrd | ⊢ ( 𝜑  →  ( 𝑌 ‘ ( 𝑆 ‘ ( 0g ‘ 𝑈 ) ) )  ⊆  ( 𝑂 ‘ { ( 0g ‘ 𝑈 ) } ) ) | 
						
							| 70 | 14 60 69 | pm2.61ne | ⊢ ( 𝜑  →  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) )  ⊆  ( 𝑂 ‘ { 𝑋 } ) ) | 
						
							| 71 | 70 34 | eqssd | ⊢ ( 𝜑  →  ( 𝑌 ‘ ( 𝑆 ‘ 𝑋 ) )  =  ( 𝑂 ‘ { 𝑋 } ) ) |