Metamath Proof Explorer


Theorem hdmapellkr

Description: Membership in the kernel (as shown by hdmaplkr ) of the vector to dual map. Line 17 in Holland95 p. 14. (Contributed by NM, 16-Jun-2015)

Ref Expression
Hypotheses hdmapellkr.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapellkr.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
hdmapellkr.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapellkr.v 𝑉 = ( Base ‘ 𝑈 )
hdmapellkr.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmapellkr.z 0 = ( 0g𝑅 )
hdmapellkr.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapellkr.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmapellkr.x ( 𝜑𝑋𝑉 )
hdmapellkr.y ( 𝜑𝑌𝑉 )
Assertion hdmapellkr ( 𝜑 → ( ( ( 𝑆𝑋 ) ‘ 𝑌 ) = 0𝑌 ∈ ( 𝑂 ‘ { 𝑋 } ) ) )

Proof

Step Hyp Ref Expression
1 hdmapellkr.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapellkr.o 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmapellkr.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
4 hdmapellkr.v 𝑉 = ( Base ‘ 𝑈 )
5 hdmapellkr.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hdmapellkr.z 0 = ( 0g𝑅 )
7 hdmapellkr.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
8 hdmapellkr.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 hdmapellkr.x ( 𝜑𝑋𝑉 )
10 hdmapellkr.y ( 𝜑𝑌𝑉 )
11 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
12 eqid ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 )
13 1 3 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
14 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
15 eqid ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
16 1 3 4 14 15 7 8 9 hdmapcl ( 𝜑 → ( 𝑆𝑋 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
17 1 14 15 3 11 8 16 lcdvbaselfl ( 𝜑 → ( 𝑆𝑋 ) ∈ ( LFnl ‘ 𝑈 ) )
18 4 5 6 11 12 13 17 10 ellkr2 ( 𝜑 → ( 𝑌 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆𝑋 ) ) ↔ ( ( 𝑆𝑋 ) ‘ 𝑌 ) = 0 ) )
19 1 2 3 4 11 12 7 8 9 hdmaplkr ( 𝜑 → ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆𝑋 ) ) = ( 𝑂 ‘ { 𝑋 } ) )
20 19 eleq2d ( 𝜑 → ( 𝑌 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆𝑋 ) ) ↔ 𝑌 ∈ ( 𝑂 ‘ { 𝑋 } ) ) )
21 18 20 bitr3d ( 𝜑 → ( ( ( 𝑆𝑋 ) ‘ 𝑌 ) = 0𝑌 ∈ ( 𝑂 ‘ { 𝑋 } ) ) )