Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapellkr.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
2 |
|
hdmapellkr.o |
⊢ 𝑂 = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) |
3 |
|
hdmapellkr.u |
⊢ 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
4 |
|
hdmapellkr.v |
⊢ 𝑉 = ( Base ‘ 𝑈 ) |
5 |
|
hdmapellkr.r |
⊢ 𝑅 = ( Scalar ‘ 𝑈 ) |
6 |
|
hdmapellkr.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
7 |
|
hdmapellkr.s |
⊢ 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
hdmapellkr.k |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
9 |
|
hdmapellkr.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
10 |
|
hdmapellkr.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
11 |
|
eqid |
⊢ ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 ) |
12 |
|
eqid |
⊢ ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 ) |
13 |
1 3 8
|
dvhlmod |
⊢ ( 𝜑 → 𝑈 ∈ LMod ) |
14 |
|
eqid |
⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) |
15 |
|
eqid |
⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) |
16 |
1 3 4 14 15 7 8 9
|
hdmapcl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
17 |
1 14 15 3 11 8 16
|
lcdvbaselfl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ) |
18 |
4 5 6 11 12 13 17 10
|
ellkr2 |
⊢ ( 𝜑 → ( 𝑌 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝑋 ) ) ↔ ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) = 0 ) ) |
19 |
1 2 3 4 11 12 7 8 9
|
hdmaplkr |
⊢ ( 𝜑 → ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝑋 ) ) = ( 𝑂 ‘ { 𝑋 } ) ) |
20 |
19
|
eleq2d |
⊢ ( 𝜑 → ( 𝑌 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝑋 ) ) ↔ 𝑌 ∈ ( 𝑂 ‘ { 𝑋 } ) ) ) |
21 |
18 20
|
bitr3d |
⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑌 ) = 0 ↔ 𝑌 ∈ ( 𝑂 ‘ { 𝑋 } ) ) ) |