Metamath Proof Explorer


Theorem hdmapip0

Description: Zero property that will be used for inner product. (Contributed by NM, 9-Jun-2015)

Ref Expression
Hypotheses hdmapip0.h 𝐻 = ( LHyp ‘ 𝐾 )
hdmapip0.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
hdmapip0.v 𝑉 = ( Base ‘ 𝑈 )
hdmapip0.o 0 = ( 0g𝑈 )
hdmapip0.r 𝑅 = ( Scalar ‘ 𝑈 )
hdmapip0.z 𝑍 = ( 0g𝑅 )
hdmapip0.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
hdmapip0.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
hdmapip0.x ( 𝜑𝑋𝑉 )
Assertion hdmapip0 ( 𝜑 → ( ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍𝑋 = 0 ) )

Proof

Step Hyp Ref Expression
1 hdmapip0.h 𝐻 = ( LHyp ‘ 𝐾 )
2 hdmapip0.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
3 hdmapip0.v 𝑉 = ( Base ‘ 𝑈 )
4 hdmapip0.o 0 = ( 0g𝑈 )
5 hdmapip0.r 𝑅 = ( Scalar ‘ 𝑈 )
6 hdmapip0.z 𝑍 = ( 0g𝑅 )
7 hdmapip0.s 𝑆 = ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 )
8 hdmapip0.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
9 hdmapip0.x ( 𝜑𝑋𝑉 )
10 eqid ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )
11 8 adantr ( ( 𝜑𝑋0 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 9 anim1i ( ( 𝜑𝑋0 ) → ( 𝑋𝑉𝑋0 ) )
13 eldifsn ( 𝑋 ∈ ( 𝑉 ∖ { 0 } ) ↔ ( 𝑋𝑉𝑋0 ) )
14 12 13 sylibr ( ( 𝜑𝑋0 ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
15 1 10 2 3 4 11 14 dochnel ( ( 𝜑𝑋0 ) → ¬ 𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) )
16 eqid ( LFnl ‘ 𝑈 ) = ( LFnl ‘ 𝑈 )
17 eqid ( LKer ‘ 𝑈 ) = ( LKer ‘ 𝑈 )
18 1 2 8 dvhlmod ( 𝜑𝑈 ∈ LMod )
19 eqid ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
20 eqid ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )
21 1 2 3 19 20 7 8 9 hdmapcl ( 𝜑 → ( 𝑆𝑋 ) ∈ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) )
22 1 19 20 2 16 8 21 lcdvbaselfl ( 𝜑 → ( 𝑆𝑋 ) ∈ ( LFnl ‘ 𝑈 ) )
23 3 5 6 16 17 18 22 9 ellkr2 ( 𝜑 → ( 𝑋 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆𝑋 ) ) ↔ ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍 ) )
24 23 biimpar ( ( 𝜑 ∧ ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍 ) → 𝑋 ∈ ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆𝑋 ) ) )
25 1 10 2 3 16 17 7 8 9 hdmaplkr ( 𝜑 → ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆𝑋 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) )
26 25 adantr ( ( 𝜑 ∧ ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍 ) → ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆𝑋 ) ) = ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) )
27 24 26 eleqtrd ( ( 𝜑 ∧ ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍 ) → 𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) )
28 27 ex ( 𝜑 → ( ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) )
29 28 adantr ( ( 𝜑𝑋0 ) → ( ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍𝑋 ∈ ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) )
30 15 29 mtod ( ( 𝜑𝑋0 ) → ¬ ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍 )
31 30 neqned ( ( 𝜑𝑋0 ) → ( ( 𝑆𝑋 ) ‘ 𝑋 ) ≠ 𝑍 )
32 31 ex ( 𝜑 → ( 𝑋0 → ( ( 𝑆𝑋 ) ‘ 𝑋 ) ≠ 𝑍 ) )
33 32 necon4d ( 𝜑 → ( ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍𝑋 = 0 ) )
34 33 imp ( ( 𝜑 ∧ ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍 ) → 𝑋 = 0 )
35 fveq2 ( 𝑋 = 0 → ( ( 𝑆𝑋 ) ‘ 𝑋 ) = ( ( 𝑆𝑋 ) ‘ 0 ) )
36 5 6 4 16 lfl0 ( ( 𝑈 ∈ LMod ∧ ( 𝑆𝑋 ) ∈ ( LFnl ‘ 𝑈 ) ) → ( ( 𝑆𝑋 ) ‘ 0 ) = 𝑍 )
37 18 22 36 syl2anc ( 𝜑 → ( ( 𝑆𝑋 ) ‘ 0 ) = 𝑍 )
38 35 37 sylan9eqr ( ( 𝜑𝑋 = 0 ) → ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍 )
39 34 38 impbida ( 𝜑 → ( ( ( 𝑆𝑋 ) ‘ 𝑋 ) = 𝑍𝑋 = 0 ) )