| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapip0.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 2 |  | hdmapip0.u | ⊢ 𝑈  =  ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 3 |  | hdmapip0.v | ⊢ 𝑉  =  ( Base ‘ 𝑈 ) | 
						
							| 4 |  | hdmapip0.o | ⊢  0   =  ( 0g ‘ 𝑈 ) | 
						
							| 5 |  | hdmapip0.r | ⊢ 𝑅  =  ( Scalar ‘ 𝑈 ) | 
						
							| 6 |  | hdmapip0.z | ⊢ 𝑍  =  ( 0g ‘ 𝑅 ) | 
						
							| 7 |  | hdmapip0.s | ⊢ 𝑆  =  ( ( HDMap ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 8 |  | hdmapip0.k | ⊢ ( 𝜑  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 9 |  | hdmapip0.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | eqid | ⊢ ( ( ocH ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 11 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠   0  )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 12 | 9 | anim1i | ⊢ ( ( 𝜑  ∧  𝑋  ≠   0  )  →  ( 𝑋  ∈  𝑉  ∧  𝑋  ≠   0  ) ) | 
						
							| 13 |  | eldifsn | ⊢ ( 𝑋  ∈  ( 𝑉  ∖  {  0  } )  ↔  ( 𝑋  ∈  𝑉  ∧  𝑋  ≠   0  ) ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( ( 𝜑  ∧  𝑋  ≠   0  )  →  𝑋  ∈  ( 𝑉  ∖  {  0  } ) ) | 
						
							| 15 | 1 10 2 3 4 11 14 | dochnel | ⊢ ( ( 𝜑  ∧  𝑋  ≠   0  )  →  ¬  𝑋  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) | 
						
							| 16 |  | eqid | ⊢ ( LFnl ‘ 𝑈 )  =  ( LFnl ‘ 𝑈 ) | 
						
							| 17 |  | eqid | ⊢ ( LKer ‘ 𝑈 )  =  ( LKer ‘ 𝑈 ) | 
						
							| 18 | 1 2 8 | dvhlmod | ⊢ ( 𝜑  →  𝑈  ∈  LMod ) | 
						
							| 19 |  | eqid | ⊢ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )  =  ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 20 |  | eqid | ⊢ ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) )  =  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) | 
						
							| 21 | 1 2 3 19 20 7 8 9 | hdmapcl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( Base ‘ ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 ) ) ) | 
						
							| 22 | 1 19 20 2 16 8 21 | lcdvbaselfl | ⊢ ( 𝜑  →  ( 𝑆 ‘ 𝑋 )  ∈  ( LFnl ‘ 𝑈 ) ) | 
						
							| 23 | 3 5 6 16 17 18 22 9 | ellkr2 | ⊢ ( 𝜑  →  ( 𝑋  ∈  ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝑋 ) )  ↔  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  𝑍 ) ) | 
						
							| 24 | 23 | biimpar | ⊢ ( ( 𝜑  ∧  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  𝑍 )  →  𝑋  ∈  ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝑋 ) ) ) | 
						
							| 25 | 1 10 2 3 16 17 7 8 9 | hdmaplkr | ⊢ ( 𝜑  →  ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝑋 ) )  =  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  𝑍 )  →  ( ( LKer ‘ 𝑈 ) ‘ ( 𝑆 ‘ 𝑋 ) )  =  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) | 
						
							| 27 | 24 26 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  𝑍 )  →  𝑋  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  𝑍  →  𝑋  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠   0  )  →  ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  𝑍  →  𝑋  ∈  ( ( ( ocH ‘ 𝐾 ) ‘ 𝑊 ) ‘ { 𝑋 } ) ) ) | 
						
							| 30 | 15 29 | mtod | ⊢ ( ( 𝜑  ∧  𝑋  ≠   0  )  →  ¬  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  𝑍 ) | 
						
							| 31 | 30 | neqned | ⊢ ( ( 𝜑  ∧  𝑋  ≠   0  )  →  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  ≠  𝑍 ) | 
						
							| 32 | 31 | ex | ⊢ ( 𝜑  →  ( 𝑋  ≠   0   →  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  ≠  𝑍 ) ) | 
						
							| 33 | 32 | necon4d | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  𝑍  →  𝑋  =   0  ) ) | 
						
							| 34 | 33 | imp | ⊢ ( ( 𝜑  ∧  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  𝑍 )  →  𝑋  =   0  ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑋  =   0   →  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  ( ( 𝑆 ‘ 𝑋 ) ‘  0  ) ) | 
						
							| 36 | 5 6 4 16 | lfl0 | ⊢ ( ( 𝑈  ∈  LMod  ∧  ( 𝑆 ‘ 𝑋 )  ∈  ( LFnl ‘ 𝑈 ) )  →  ( ( 𝑆 ‘ 𝑋 ) ‘  0  )  =  𝑍 ) | 
						
							| 37 | 18 22 36 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑆 ‘ 𝑋 ) ‘  0  )  =  𝑍 ) | 
						
							| 38 | 35 37 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑋  =   0  )  →  ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  𝑍 ) | 
						
							| 39 | 34 38 | impbida | ⊢ ( 𝜑  →  ( ( ( 𝑆 ‘ 𝑋 ) ‘ 𝑋 )  =  𝑍  ↔  𝑋  =   0  ) ) |