Step |
Hyp |
Ref |
Expression |
1 |
|
hdmapip0.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmapip0.u |
|- U = ( ( DVecH ` K ) ` W ) |
3 |
|
hdmapip0.v |
|- V = ( Base ` U ) |
4 |
|
hdmapip0.o |
|- .0. = ( 0g ` U ) |
5 |
|
hdmapip0.r |
|- R = ( Scalar ` U ) |
6 |
|
hdmapip0.z |
|- Z = ( 0g ` R ) |
7 |
|
hdmapip0.s |
|- S = ( ( HDMap ` K ) ` W ) |
8 |
|
hdmapip0.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
hdmapip0.x |
|- ( ph -> X e. V ) |
10 |
|
eqid |
|- ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) |
11 |
8
|
adantr |
|- ( ( ph /\ X =/= .0. ) -> ( K e. HL /\ W e. H ) ) |
12 |
9
|
anim1i |
|- ( ( ph /\ X =/= .0. ) -> ( X e. V /\ X =/= .0. ) ) |
13 |
|
eldifsn |
|- ( X e. ( V \ { .0. } ) <-> ( X e. V /\ X =/= .0. ) ) |
14 |
12 13
|
sylibr |
|- ( ( ph /\ X =/= .0. ) -> X e. ( V \ { .0. } ) ) |
15 |
1 10 2 3 4 11 14
|
dochnel |
|- ( ( ph /\ X =/= .0. ) -> -. X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) |
16 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
17 |
|
eqid |
|- ( LKer ` U ) = ( LKer ` U ) |
18 |
1 2 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
19 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
20 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
21 |
1 2 3 19 20 7 8 9
|
hdmapcl |
|- ( ph -> ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
22 |
1 19 20 2 16 8 21
|
lcdvbaselfl |
|- ( ph -> ( S ` X ) e. ( LFnl ` U ) ) |
23 |
3 5 6 16 17 18 22 9
|
ellkr2 |
|- ( ph -> ( X e. ( ( LKer ` U ) ` ( S ` X ) ) <-> ( ( S ` X ) ` X ) = Z ) ) |
24 |
23
|
biimpar |
|- ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> X e. ( ( LKer ` U ) ` ( S ` X ) ) ) |
25 |
1 10 2 3 16 17 7 8 9
|
hdmaplkr |
|- ( ph -> ( ( LKer ` U ) ` ( S ` X ) ) = ( ( ( ocH ` K ) ` W ) ` { X } ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> ( ( LKer ` U ) ` ( S ` X ) ) = ( ( ( ocH ` K ) ` W ) ` { X } ) ) |
27 |
24 26
|
eleqtrd |
|- ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) |
28 |
27
|
ex |
|- ( ph -> ( ( ( S ` X ) ` X ) = Z -> X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ X =/= .0. ) -> ( ( ( S ` X ) ` X ) = Z -> X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) ) |
30 |
15 29
|
mtod |
|- ( ( ph /\ X =/= .0. ) -> -. ( ( S ` X ) ` X ) = Z ) |
31 |
30
|
neqned |
|- ( ( ph /\ X =/= .0. ) -> ( ( S ` X ) ` X ) =/= Z ) |
32 |
31
|
ex |
|- ( ph -> ( X =/= .0. -> ( ( S ` X ) ` X ) =/= Z ) ) |
33 |
32
|
necon4d |
|- ( ph -> ( ( ( S ` X ) ` X ) = Z -> X = .0. ) ) |
34 |
33
|
imp |
|- ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> X = .0. ) |
35 |
|
fveq2 |
|- ( X = .0. -> ( ( S ` X ) ` X ) = ( ( S ` X ) ` .0. ) ) |
36 |
5 6 4 16
|
lfl0 |
|- ( ( U e. LMod /\ ( S ` X ) e. ( LFnl ` U ) ) -> ( ( S ` X ) ` .0. ) = Z ) |
37 |
18 22 36
|
syl2anc |
|- ( ph -> ( ( S ` X ) ` .0. ) = Z ) |
38 |
35 37
|
sylan9eqr |
|- ( ( ph /\ X = .0. ) -> ( ( S ` X ) ` X ) = Z ) |
39 |
34 38
|
impbida |
|- ( ph -> ( ( ( S ` X ) ` X ) = Z <-> X = .0. ) ) |