| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmapip0.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmapip0.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 3 |  | hdmapip0.v |  |-  V = ( Base ` U ) | 
						
							| 4 |  | hdmapip0.o |  |-  .0. = ( 0g ` U ) | 
						
							| 5 |  | hdmapip0.r |  |-  R = ( Scalar ` U ) | 
						
							| 6 |  | hdmapip0.z |  |-  Z = ( 0g ` R ) | 
						
							| 7 |  | hdmapip0.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 8 |  | hdmapip0.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | hdmapip0.x |  |-  ( ph -> X e. V ) | 
						
							| 10 |  | eqid |  |-  ( ( ocH ` K ) ` W ) = ( ( ocH ` K ) ` W ) | 
						
							| 11 | 8 | adantr |  |-  ( ( ph /\ X =/= .0. ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 12 | 9 | anim1i |  |-  ( ( ph /\ X =/= .0. ) -> ( X e. V /\ X =/= .0. ) ) | 
						
							| 13 |  | eldifsn |  |-  ( X e. ( V \ { .0. } ) <-> ( X e. V /\ X =/= .0. ) ) | 
						
							| 14 | 12 13 | sylibr |  |-  ( ( ph /\ X =/= .0. ) -> X e. ( V \ { .0. } ) ) | 
						
							| 15 | 1 10 2 3 4 11 14 | dochnel |  |-  ( ( ph /\ X =/= .0. ) -> -. X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) | 
						
							| 16 |  | eqid |  |-  ( LFnl ` U ) = ( LFnl ` U ) | 
						
							| 17 |  | eqid |  |-  ( LKer ` U ) = ( LKer ` U ) | 
						
							| 18 | 1 2 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 19 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 20 |  | eqid |  |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 21 | 1 2 3 19 20 7 8 9 | hdmapcl |  |-  ( ph -> ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 22 | 1 19 20 2 16 8 21 | lcdvbaselfl |  |-  ( ph -> ( S ` X ) e. ( LFnl ` U ) ) | 
						
							| 23 | 3 5 6 16 17 18 22 9 | ellkr2 |  |-  ( ph -> ( X e. ( ( LKer ` U ) ` ( S ` X ) ) <-> ( ( S ` X ) ` X ) = Z ) ) | 
						
							| 24 | 23 | biimpar |  |-  ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> X e. ( ( LKer ` U ) ` ( S ` X ) ) ) | 
						
							| 25 | 1 10 2 3 16 17 7 8 9 | hdmaplkr |  |-  ( ph -> ( ( LKer ` U ) ` ( S ` X ) ) = ( ( ( ocH ` K ) ` W ) ` { X } ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> ( ( LKer ` U ) ` ( S ` X ) ) = ( ( ( ocH ` K ) ` W ) ` { X } ) ) | 
						
							| 27 | 24 26 | eleqtrd |  |-  ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) | 
						
							| 28 | 27 | ex |  |-  ( ph -> ( ( ( S ` X ) ` X ) = Z -> X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ X =/= .0. ) -> ( ( ( S ` X ) ` X ) = Z -> X e. ( ( ( ocH ` K ) ` W ) ` { X } ) ) ) | 
						
							| 30 | 15 29 | mtod |  |-  ( ( ph /\ X =/= .0. ) -> -. ( ( S ` X ) ` X ) = Z ) | 
						
							| 31 | 30 | neqned |  |-  ( ( ph /\ X =/= .0. ) -> ( ( S ` X ) ` X ) =/= Z ) | 
						
							| 32 | 31 | ex |  |-  ( ph -> ( X =/= .0. -> ( ( S ` X ) ` X ) =/= Z ) ) | 
						
							| 33 | 32 | necon4d |  |-  ( ph -> ( ( ( S ` X ) ` X ) = Z -> X = .0. ) ) | 
						
							| 34 | 33 | imp |  |-  ( ( ph /\ ( ( S ` X ) ` X ) = Z ) -> X = .0. ) | 
						
							| 35 |  | fveq2 |  |-  ( X = .0. -> ( ( S ` X ) ` X ) = ( ( S ` X ) ` .0. ) ) | 
						
							| 36 | 5 6 4 16 | lfl0 |  |-  ( ( U e. LMod /\ ( S ` X ) e. ( LFnl ` U ) ) -> ( ( S ` X ) ` .0. ) = Z ) | 
						
							| 37 | 18 22 36 | syl2anc |  |-  ( ph -> ( ( S ` X ) ` .0. ) = Z ) | 
						
							| 38 | 35 37 | sylan9eqr |  |-  ( ( ph /\ X = .0. ) -> ( ( S ` X ) ` X ) = Z ) | 
						
							| 39 | 34 38 | impbida |  |-  ( ph -> ( ( ( S ` X ) ` X ) = Z <-> X = .0. ) ) |