Step |
Hyp |
Ref |
Expression |
1 |
|
hdmaplkr.h |
|- H = ( LHyp ` K ) |
2 |
|
hdmaplkr.o |
|- O = ( ( ocH ` K ) ` W ) |
3 |
|
hdmaplkr.u |
|- U = ( ( DVecH ` K ) ` W ) |
4 |
|
hdmaplkr.v |
|- V = ( Base ` U ) |
5 |
|
hdmaplkr.f |
|- F = ( LFnl ` U ) |
6 |
|
hdmaplkr.y |
|- Y = ( LKer ` U ) |
7 |
|
hdmaplkr.s |
|- S = ( ( HDMap ` K ) ` W ) |
8 |
|
hdmaplkr.k |
|- ( ph -> ( K e. HL /\ W e. H ) ) |
9 |
|
hdmaplkr.x |
|- ( ph -> X e. V ) |
10 |
|
fveq2 |
|- ( X = ( 0g ` U ) -> ( S ` X ) = ( S ` ( 0g ` U ) ) ) |
11 |
10
|
fveq2d |
|- ( X = ( 0g ` U ) -> ( Y ` ( S ` X ) ) = ( Y ` ( S ` ( 0g ` U ) ) ) ) |
12 |
|
sneq |
|- ( X = ( 0g ` U ) -> { X } = { ( 0g ` U ) } ) |
13 |
12
|
fveq2d |
|- ( X = ( 0g ` U ) -> ( O ` { X } ) = ( O ` { ( 0g ` U ) } ) ) |
14 |
11 13
|
sseq12d |
|- ( X = ( 0g ` U ) -> ( ( Y ` ( S ` X ) ) C_ ( O ` { X } ) <-> ( Y ` ( S ` ( 0g ` U ) ) ) C_ ( O ` { ( 0g ` U ) } ) ) ) |
15 |
|
eqid |
|- ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) |
16 |
1 15 8
|
lcdlmod |
|- ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) |
17 |
|
eqid |
|- ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) |
18 |
1 3 4 15 17 7 8 9
|
hdmapcl |
|- ( ph -> ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
19 |
|
eqid |
|- ( LSpan ` ( ( LCDual ` K ) ` W ) ) = ( LSpan ` ( ( LCDual ` K ) ` W ) ) |
20 |
17 19
|
lspsnid |
|- ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) -> ( S ` X ) e. ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) ) |
21 |
16 18 20
|
syl2anc |
|- ( ph -> ( S ` X ) e. ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) ) |
22 |
|
eqid |
|- ( LSpan ` U ) = ( LSpan ` U ) |
23 |
|
eqid |
|- ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) |
24 |
1 3 4 22 15 19 23 7 8 9
|
hdmap10 |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) = ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) ) |
25 |
|
eqid |
|- ( LFnl ` U ) = ( LFnl ` U ) |
26 |
1 2 23 3 4 22 25 6 8 9
|
mapdsn |
|- ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) = { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } ) |
27 |
24 26
|
eqtr3d |
|- ( ph -> ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) = { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } ) |
28 |
21 27
|
eleqtrd |
|- ( ph -> ( S ` X ) e. { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } ) |
29 |
1 15 17 3 25 8 18
|
lcdvbaselfl |
|- ( ph -> ( S ` X ) e. ( LFnl ` U ) ) |
30 |
|
fveq2 |
|- ( f = ( S ` X ) -> ( Y ` f ) = ( Y ` ( S ` X ) ) ) |
31 |
30
|
sseq2d |
|- ( f = ( S ` X ) -> ( ( O ` { X } ) C_ ( Y ` f ) <-> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) ) |
32 |
31
|
elrab3 |
|- ( ( S ` X ) e. ( LFnl ` U ) -> ( ( S ` X ) e. { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } <-> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) ) |
33 |
29 32
|
syl |
|- ( ph -> ( ( S ` X ) e. { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } <-> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) ) |
34 |
28 33
|
mpbid |
|- ( ph -> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) |
35 |
34
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) |
36 |
|
eqid |
|- ( LSHyp ` U ) = ( LSHyp ` U ) |
37 |
1 3 8
|
dvhlvec |
|- ( ph -> U e. LVec ) |
38 |
37
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> U e. LVec ) |
39 |
|
eqid |
|- ( 0g ` U ) = ( 0g ` U ) |
40 |
8
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) |
41 |
9
|
anim1i |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( X e. V /\ X =/= ( 0g ` U ) ) ) |
42 |
|
eldifsn |
|- ( X e. ( V \ { ( 0g ` U ) } ) <-> ( X e. V /\ X =/= ( 0g ` U ) ) ) |
43 |
41 42
|
sylibr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> X e. ( V \ { ( 0g ` U ) } ) ) |
44 |
1 2 3 4 39 36 40 43
|
dochsnshp |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( O ` { X } ) e. ( LSHyp ` U ) ) |
45 |
29
|
adantr |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( S ` X ) e. ( LFnl ` U ) ) |
46 |
|
eqid |
|- ( Scalar ` U ) = ( Scalar ` U ) |
47 |
|
eqid |
|- ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) |
48 |
|
eqid |
|- ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) |
49 |
1 3 4 46 47 15 48 8
|
lcd0v |
|- ( ph -> ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) |
50 |
49
|
eqeq2d |
|- ( ph -> ( ( S ` X ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( S ` X ) = ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) |
51 |
1 3 4 39 15 48 7 8 9
|
hdmapeq0 |
|- ( ph -> ( ( S ` X ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> X = ( 0g ` U ) ) ) |
52 |
50 51
|
bitr3d |
|- ( ph -> ( ( S ` X ) = ( V X. { ( 0g ` ( Scalar ` U ) ) } ) <-> X = ( 0g ` U ) ) ) |
53 |
52
|
necon3bid |
|- ( ph -> ( ( S ` X ) =/= ( V X. { ( 0g ` ( Scalar ` U ) ) } ) <-> X =/= ( 0g ` U ) ) ) |
54 |
53
|
biimpar |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( S ` X ) =/= ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) |
55 |
4 46 47 36 25 6
|
lkrshp |
|- ( ( U e. LVec /\ ( S ` X ) e. ( LFnl ` U ) /\ ( S ` X ) =/= ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) -> ( Y ` ( S ` X ) ) e. ( LSHyp ` U ) ) |
56 |
38 45 54 55
|
syl3anc |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( Y ` ( S ` X ) ) e. ( LSHyp ` U ) ) |
57 |
36 38 44 56
|
lshpcmp |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( ( O ` { X } ) C_ ( Y ` ( S ` X ) ) <-> ( O ` { X } ) = ( Y ` ( S ` X ) ) ) ) |
58 |
35 57
|
mpbid |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( O ` { X } ) = ( Y ` ( S ` X ) ) ) |
59 |
|
eqimss2 |
|- ( ( O ` { X } ) = ( Y ` ( S ` X ) ) -> ( Y ` ( S ` X ) ) C_ ( O ` { X } ) ) |
60 |
58 59
|
syl |
|- ( ( ph /\ X =/= ( 0g ` U ) ) -> ( Y ` ( S ` X ) ) C_ ( O ` { X } ) ) |
61 |
1 3 8
|
dvhlmod |
|- ( ph -> U e. LMod ) |
62 |
4 39
|
lmod0vcl |
|- ( U e. LMod -> ( 0g ` U ) e. V ) |
63 |
61 62
|
syl |
|- ( ph -> ( 0g ` U ) e. V ) |
64 |
1 3 4 15 17 7 8 63
|
hdmapcl |
|- ( ph -> ( S ` ( 0g ` U ) ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) |
65 |
1 15 17 3 25 8 64
|
lcdvbaselfl |
|- ( ph -> ( S ` ( 0g ` U ) ) e. ( LFnl ` U ) ) |
66 |
4 25 6 61 65
|
lkrssv |
|- ( ph -> ( Y ` ( S ` ( 0g ` U ) ) ) C_ V ) |
67 |
1 3 2 4 39
|
doch0 |
|- ( ( K e. HL /\ W e. H ) -> ( O ` { ( 0g ` U ) } ) = V ) |
68 |
8 67
|
syl |
|- ( ph -> ( O ` { ( 0g ` U ) } ) = V ) |
69 |
66 68
|
sseqtrrd |
|- ( ph -> ( Y ` ( S ` ( 0g ` U ) ) ) C_ ( O ` { ( 0g ` U ) } ) ) |
70 |
14 60 69
|
pm2.61ne |
|- ( ph -> ( Y ` ( S ` X ) ) C_ ( O ` { X } ) ) |
71 |
70 34
|
eqssd |
|- ( ph -> ( Y ` ( S ` X ) ) = ( O ` { X } ) ) |