| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hdmaplkr.h |  |-  H = ( LHyp ` K ) | 
						
							| 2 |  | hdmaplkr.o |  |-  O = ( ( ocH ` K ) ` W ) | 
						
							| 3 |  | hdmaplkr.u |  |-  U = ( ( DVecH ` K ) ` W ) | 
						
							| 4 |  | hdmaplkr.v |  |-  V = ( Base ` U ) | 
						
							| 5 |  | hdmaplkr.f |  |-  F = ( LFnl ` U ) | 
						
							| 6 |  | hdmaplkr.y |  |-  Y = ( LKer ` U ) | 
						
							| 7 |  | hdmaplkr.s |  |-  S = ( ( HDMap ` K ) ` W ) | 
						
							| 8 |  | hdmaplkr.k |  |-  ( ph -> ( K e. HL /\ W e. H ) ) | 
						
							| 9 |  | hdmaplkr.x |  |-  ( ph -> X e. V ) | 
						
							| 10 |  | fveq2 |  |-  ( X = ( 0g ` U ) -> ( S ` X ) = ( S ` ( 0g ` U ) ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( X = ( 0g ` U ) -> ( Y ` ( S ` X ) ) = ( Y ` ( S ` ( 0g ` U ) ) ) ) | 
						
							| 12 |  | sneq |  |-  ( X = ( 0g ` U ) -> { X } = { ( 0g ` U ) } ) | 
						
							| 13 | 12 | fveq2d |  |-  ( X = ( 0g ` U ) -> ( O ` { X } ) = ( O ` { ( 0g ` U ) } ) ) | 
						
							| 14 | 11 13 | sseq12d |  |-  ( X = ( 0g ` U ) -> ( ( Y ` ( S ` X ) ) C_ ( O ` { X } ) <-> ( Y ` ( S ` ( 0g ` U ) ) ) C_ ( O ` { ( 0g ` U ) } ) ) ) | 
						
							| 15 |  | eqid |  |-  ( ( LCDual ` K ) ` W ) = ( ( LCDual ` K ) ` W ) | 
						
							| 16 | 1 15 8 | lcdlmod |  |-  ( ph -> ( ( LCDual ` K ) ` W ) e. LMod ) | 
						
							| 17 |  | eqid |  |-  ( Base ` ( ( LCDual ` K ) ` W ) ) = ( Base ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 18 | 1 3 4 15 17 7 8 9 | hdmapcl |  |-  ( ph -> ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 19 |  | eqid |  |-  ( LSpan ` ( ( LCDual ` K ) ` W ) ) = ( LSpan ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 20 | 17 19 | lspsnid |  |-  ( ( ( ( LCDual ` K ) ` W ) e. LMod /\ ( S ` X ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) -> ( S ` X ) e. ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) ) | 
						
							| 21 | 16 18 20 | syl2anc |  |-  ( ph -> ( S ` X ) e. ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) ) | 
						
							| 22 |  | eqid |  |-  ( LSpan ` U ) = ( LSpan ` U ) | 
						
							| 23 |  | eqid |  |-  ( ( mapd ` K ) ` W ) = ( ( mapd ` K ) ` W ) | 
						
							| 24 | 1 3 4 22 15 19 23 7 8 9 | hdmap10 |  |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) = ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) ) | 
						
							| 25 |  | eqid |  |-  ( LFnl ` U ) = ( LFnl ` U ) | 
						
							| 26 | 1 2 23 3 4 22 25 6 8 9 | mapdsn |  |-  ( ph -> ( ( ( mapd ` K ) ` W ) ` ( ( LSpan ` U ) ` { X } ) ) = { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } ) | 
						
							| 27 | 24 26 | eqtr3d |  |-  ( ph -> ( ( LSpan ` ( ( LCDual ` K ) ` W ) ) ` { ( S ` X ) } ) = { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } ) | 
						
							| 28 | 21 27 | eleqtrd |  |-  ( ph -> ( S ` X ) e. { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } ) | 
						
							| 29 | 1 15 17 3 25 8 18 | lcdvbaselfl |  |-  ( ph -> ( S ` X ) e. ( LFnl ` U ) ) | 
						
							| 30 |  | fveq2 |  |-  ( f = ( S ` X ) -> ( Y ` f ) = ( Y ` ( S ` X ) ) ) | 
						
							| 31 | 30 | sseq2d |  |-  ( f = ( S ` X ) -> ( ( O ` { X } ) C_ ( Y ` f ) <-> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) ) | 
						
							| 32 | 31 | elrab3 |  |-  ( ( S ` X ) e. ( LFnl ` U ) -> ( ( S ` X ) e. { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } <-> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) ) | 
						
							| 33 | 29 32 | syl |  |-  ( ph -> ( ( S ` X ) e. { f e. ( LFnl ` U ) | ( O ` { X } ) C_ ( Y ` f ) } <-> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) ) | 
						
							| 34 | 28 33 | mpbid |  |-  ( ph -> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> ( O ` { X } ) C_ ( Y ` ( S ` X ) ) ) | 
						
							| 36 |  | eqid |  |-  ( LSHyp ` U ) = ( LSHyp ` U ) | 
						
							| 37 | 1 3 8 | dvhlvec |  |-  ( ph -> U e. LVec ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> U e. LVec ) | 
						
							| 39 |  | eqid |  |-  ( 0g ` U ) = ( 0g ` U ) | 
						
							| 40 | 8 | adantr |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 41 | 9 | anim1i |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> ( X e. V /\ X =/= ( 0g ` U ) ) ) | 
						
							| 42 |  | eldifsn |  |-  ( X e. ( V \ { ( 0g ` U ) } ) <-> ( X e. V /\ X =/= ( 0g ` U ) ) ) | 
						
							| 43 | 41 42 | sylibr |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> X e. ( V \ { ( 0g ` U ) } ) ) | 
						
							| 44 | 1 2 3 4 39 36 40 43 | dochsnshp |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> ( O ` { X } ) e. ( LSHyp ` U ) ) | 
						
							| 45 | 29 | adantr |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> ( S ` X ) e. ( LFnl ` U ) ) | 
						
							| 46 |  | eqid |  |-  ( Scalar ` U ) = ( Scalar ` U ) | 
						
							| 47 |  | eqid |  |-  ( 0g ` ( Scalar ` U ) ) = ( 0g ` ( Scalar ` U ) ) | 
						
							| 48 |  | eqid |  |-  ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) | 
						
							| 49 | 1 3 4 46 47 15 48 8 | lcd0v |  |-  ( ph -> ( 0g ` ( ( LCDual ` K ) ` W ) ) = ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) | 
						
							| 50 | 49 | eqeq2d |  |-  ( ph -> ( ( S ` X ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> ( S ` X ) = ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) ) | 
						
							| 51 | 1 3 4 39 15 48 7 8 9 | hdmapeq0 |  |-  ( ph -> ( ( S ` X ) = ( 0g ` ( ( LCDual ` K ) ` W ) ) <-> X = ( 0g ` U ) ) ) | 
						
							| 52 | 50 51 | bitr3d |  |-  ( ph -> ( ( S ` X ) = ( V X. { ( 0g ` ( Scalar ` U ) ) } ) <-> X = ( 0g ` U ) ) ) | 
						
							| 53 | 52 | necon3bid |  |-  ( ph -> ( ( S ` X ) =/= ( V X. { ( 0g ` ( Scalar ` U ) ) } ) <-> X =/= ( 0g ` U ) ) ) | 
						
							| 54 | 53 | biimpar |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> ( S ` X ) =/= ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) | 
						
							| 55 | 4 46 47 36 25 6 | lkrshp |  |-  ( ( U e. LVec /\ ( S ` X ) e. ( LFnl ` U ) /\ ( S ` X ) =/= ( V X. { ( 0g ` ( Scalar ` U ) ) } ) ) -> ( Y ` ( S ` X ) ) e. ( LSHyp ` U ) ) | 
						
							| 56 | 38 45 54 55 | syl3anc |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> ( Y ` ( S ` X ) ) e. ( LSHyp ` U ) ) | 
						
							| 57 | 36 38 44 56 | lshpcmp |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> ( ( O ` { X } ) C_ ( Y ` ( S ` X ) ) <-> ( O ` { X } ) = ( Y ` ( S ` X ) ) ) ) | 
						
							| 58 | 35 57 | mpbid |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> ( O ` { X } ) = ( Y ` ( S ` X ) ) ) | 
						
							| 59 |  | eqimss2 |  |-  ( ( O ` { X } ) = ( Y ` ( S ` X ) ) -> ( Y ` ( S ` X ) ) C_ ( O ` { X } ) ) | 
						
							| 60 | 58 59 | syl |  |-  ( ( ph /\ X =/= ( 0g ` U ) ) -> ( Y ` ( S ` X ) ) C_ ( O ` { X } ) ) | 
						
							| 61 | 1 3 8 | dvhlmod |  |-  ( ph -> U e. LMod ) | 
						
							| 62 | 4 39 | lmod0vcl |  |-  ( U e. LMod -> ( 0g ` U ) e. V ) | 
						
							| 63 | 61 62 | syl |  |-  ( ph -> ( 0g ` U ) e. V ) | 
						
							| 64 | 1 3 4 15 17 7 8 63 | hdmapcl |  |-  ( ph -> ( S ` ( 0g ` U ) ) e. ( Base ` ( ( LCDual ` K ) ` W ) ) ) | 
						
							| 65 | 1 15 17 3 25 8 64 | lcdvbaselfl |  |-  ( ph -> ( S ` ( 0g ` U ) ) e. ( LFnl ` U ) ) | 
						
							| 66 | 4 25 6 61 65 | lkrssv |  |-  ( ph -> ( Y ` ( S ` ( 0g ` U ) ) ) C_ V ) | 
						
							| 67 | 1 3 2 4 39 | doch0 |  |-  ( ( K e. HL /\ W e. H ) -> ( O ` { ( 0g ` U ) } ) = V ) | 
						
							| 68 | 8 67 | syl |  |-  ( ph -> ( O ` { ( 0g ` U ) } ) = V ) | 
						
							| 69 | 66 68 | sseqtrrd |  |-  ( ph -> ( Y ` ( S ` ( 0g ` U ) ) ) C_ ( O ` { ( 0g ` U ) } ) ) | 
						
							| 70 | 14 60 69 | pm2.61ne |  |-  ( ph -> ( Y ` ( S ` X ) ) C_ ( O ` { X } ) ) | 
						
							| 71 | 70 34 | eqssd |  |-  ( ph -> ( Y ` ( S ` X ) ) = ( O ` { X } ) ) |