Metamath Proof Explorer


Theorem hdmaplkr

Description: Kernel of the vector to dual map. Line 16 in Holland95 p. 14. TODO: eliminate F hypothesis. (Contributed by NM, 9-Jun-2015)

Ref Expression
Hypotheses hdmaplkr.h H=LHypK
hdmaplkr.o O=ocHKW
hdmaplkr.u U=DVecHKW
hdmaplkr.v V=BaseU
hdmaplkr.f F=LFnlU
hdmaplkr.y Y=LKerU
hdmaplkr.s S=HDMapKW
hdmaplkr.k φKHLWH
hdmaplkr.x φXV
Assertion hdmaplkr φYSX=OX

Proof

Step Hyp Ref Expression
1 hdmaplkr.h H=LHypK
2 hdmaplkr.o O=ocHKW
3 hdmaplkr.u U=DVecHKW
4 hdmaplkr.v V=BaseU
5 hdmaplkr.f F=LFnlU
6 hdmaplkr.y Y=LKerU
7 hdmaplkr.s S=HDMapKW
8 hdmaplkr.k φKHLWH
9 hdmaplkr.x φXV
10 fveq2 X=0USX=S0U
11 10 fveq2d X=0UYSX=YS0U
12 sneq X=0UX=0U
13 12 fveq2d X=0UOX=O0U
14 11 13 sseq12d X=0UYSXOXYS0UO0U
15 eqid LCDualKW=LCDualKW
16 1 15 8 lcdlmod φLCDualKWLMod
17 eqid BaseLCDualKW=BaseLCDualKW
18 1 3 4 15 17 7 8 9 hdmapcl φSXBaseLCDualKW
19 eqid LSpanLCDualKW=LSpanLCDualKW
20 17 19 lspsnid LCDualKWLModSXBaseLCDualKWSXLSpanLCDualKWSX
21 16 18 20 syl2anc φSXLSpanLCDualKWSX
22 eqid LSpanU=LSpanU
23 eqid mapdKW=mapdKW
24 1 3 4 22 15 19 23 7 8 9 hdmap10 φmapdKWLSpanUX=LSpanLCDualKWSX
25 eqid LFnlU=LFnlU
26 1 2 23 3 4 22 25 6 8 9 mapdsn φmapdKWLSpanUX=fLFnlU|OXYf
27 24 26 eqtr3d φLSpanLCDualKWSX=fLFnlU|OXYf
28 21 27 eleqtrd φSXfLFnlU|OXYf
29 1 15 17 3 25 8 18 lcdvbaselfl φSXLFnlU
30 fveq2 f=SXYf=YSX
31 30 sseq2d f=SXOXYfOXYSX
32 31 elrab3 SXLFnlUSXfLFnlU|OXYfOXYSX
33 29 32 syl φSXfLFnlU|OXYfOXYSX
34 28 33 mpbid φOXYSX
35 34 adantr φX0UOXYSX
36 eqid LSHypU=LSHypU
37 1 3 8 dvhlvec φULVec
38 37 adantr φX0UULVec
39 eqid 0U=0U
40 8 adantr φX0UKHLWH
41 9 anim1i φX0UXVX0U
42 eldifsn XV0UXVX0U
43 41 42 sylibr φX0UXV0U
44 1 2 3 4 39 36 40 43 dochsnshp φX0UOXLSHypU
45 29 adantr φX0USXLFnlU
46 eqid ScalarU=ScalarU
47 eqid 0ScalarU=0ScalarU
48 eqid 0LCDualKW=0LCDualKW
49 1 3 4 46 47 15 48 8 lcd0v φ0LCDualKW=V×0ScalarU
50 49 eqeq2d φSX=0LCDualKWSX=V×0ScalarU
51 1 3 4 39 15 48 7 8 9 hdmapeq0 φSX=0LCDualKWX=0U
52 50 51 bitr3d φSX=V×0ScalarUX=0U
53 52 necon3bid φSXV×0ScalarUX0U
54 53 biimpar φX0USXV×0ScalarU
55 4 46 47 36 25 6 lkrshp ULVecSXLFnlUSXV×0ScalarUYSXLSHypU
56 38 45 54 55 syl3anc φX0UYSXLSHypU
57 36 38 44 56 lshpcmp φX0UOXYSXOX=YSX
58 35 57 mpbid φX0UOX=YSX
59 eqimss2 OX=YSXYSXOX
60 58 59 syl φX0UYSXOX
61 1 3 8 dvhlmod φULMod
62 4 39 lmod0vcl ULMod0UV
63 61 62 syl φ0UV
64 1 3 4 15 17 7 8 63 hdmapcl φS0UBaseLCDualKW
65 1 15 17 3 25 8 64 lcdvbaselfl φS0ULFnlU
66 4 25 6 61 65 lkrssv φYS0UV
67 1 3 2 4 39 doch0 KHLWHO0U=V
68 8 67 syl φO0U=V
69 66 68 sseqtrrd φYS0UO0U
70 14 60 69 pm2.61ne φYSXOX
71 70 34 eqssd φYSX=OX