Metamath Proof Explorer


Theorem hdmaplkr

Description: Kernel of the vector to dual map. Line 16 in Holland95 p. 14. TODO: eliminate F hypothesis. (Contributed by NM, 9-Jun-2015)

Ref Expression
Hypotheses hdmaplkr.h H = LHyp K
hdmaplkr.o O = ocH K W
hdmaplkr.u U = DVecH K W
hdmaplkr.v V = Base U
hdmaplkr.f F = LFnl U
hdmaplkr.y Y = LKer U
hdmaplkr.s S = HDMap K W
hdmaplkr.k φ K HL W H
hdmaplkr.x φ X V
Assertion hdmaplkr φ Y S X = O X

Proof

Step Hyp Ref Expression
1 hdmaplkr.h H = LHyp K
2 hdmaplkr.o O = ocH K W
3 hdmaplkr.u U = DVecH K W
4 hdmaplkr.v V = Base U
5 hdmaplkr.f F = LFnl U
6 hdmaplkr.y Y = LKer U
7 hdmaplkr.s S = HDMap K W
8 hdmaplkr.k φ K HL W H
9 hdmaplkr.x φ X V
10 fveq2 X = 0 U S X = S 0 U
11 10 fveq2d X = 0 U Y S X = Y S 0 U
12 sneq X = 0 U X = 0 U
13 12 fveq2d X = 0 U O X = O 0 U
14 11 13 sseq12d X = 0 U Y S X O X Y S 0 U O 0 U
15 eqid LCDual K W = LCDual K W
16 1 15 8 lcdlmod φ LCDual K W LMod
17 eqid Base LCDual K W = Base LCDual K W
18 1 3 4 15 17 7 8 9 hdmapcl φ S X Base LCDual K W
19 eqid LSpan LCDual K W = LSpan LCDual K W
20 17 19 lspsnid LCDual K W LMod S X Base LCDual K W S X LSpan LCDual K W S X
21 16 18 20 syl2anc φ S X LSpan LCDual K W S X
22 eqid LSpan U = LSpan U
23 eqid mapd K W = mapd K W
24 1 3 4 22 15 19 23 7 8 9 hdmap10 φ mapd K W LSpan U X = LSpan LCDual K W S X
25 eqid LFnl U = LFnl U
26 1 2 23 3 4 22 25 6 8 9 mapdsn φ mapd K W LSpan U X = f LFnl U | O X Y f
27 24 26 eqtr3d φ LSpan LCDual K W S X = f LFnl U | O X Y f
28 21 27 eleqtrd φ S X f LFnl U | O X Y f
29 1 15 17 3 25 8 18 lcdvbaselfl φ S X LFnl U
30 fveq2 f = S X Y f = Y S X
31 30 sseq2d f = S X O X Y f O X Y S X
32 31 elrab3 S X LFnl U S X f LFnl U | O X Y f O X Y S X
33 29 32 syl φ S X f LFnl U | O X Y f O X Y S X
34 28 33 mpbid φ O X Y S X
35 34 adantr φ X 0 U O X Y S X
36 eqid LSHyp U = LSHyp U
37 1 3 8 dvhlvec φ U LVec
38 37 adantr φ X 0 U U LVec
39 eqid 0 U = 0 U
40 8 adantr φ X 0 U K HL W H
41 9 anim1i φ X 0 U X V X 0 U
42 eldifsn X V 0 U X V X 0 U
43 41 42 sylibr φ X 0 U X V 0 U
44 1 2 3 4 39 36 40 43 dochsnshp φ X 0 U O X LSHyp U
45 29 adantr φ X 0 U S X LFnl U
46 eqid Scalar U = Scalar U
47 eqid 0 Scalar U = 0 Scalar U
48 eqid 0 LCDual K W = 0 LCDual K W
49 1 3 4 46 47 15 48 8 lcd0v φ 0 LCDual K W = V × 0 Scalar U
50 49 eqeq2d φ S X = 0 LCDual K W S X = V × 0 Scalar U
51 1 3 4 39 15 48 7 8 9 hdmapeq0 φ S X = 0 LCDual K W X = 0 U
52 50 51 bitr3d φ S X = V × 0 Scalar U X = 0 U
53 52 necon3bid φ S X V × 0 Scalar U X 0 U
54 53 biimpar φ X 0 U S X V × 0 Scalar U
55 4 46 47 36 25 6 lkrshp U LVec S X LFnl U S X V × 0 Scalar U Y S X LSHyp U
56 38 45 54 55 syl3anc φ X 0 U Y S X LSHyp U
57 36 38 44 56 lshpcmp φ X 0 U O X Y S X O X = Y S X
58 35 57 mpbid φ X 0 U O X = Y S X
59 eqimss2 O X = Y S X Y S X O X
60 58 59 syl φ X 0 U Y S X O X
61 1 3 8 dvhlmod φ U LMod
62 4 39 lmod0vcl U LMod 0 U V
63 61 62 syl φ 0 U V
64 1 3 4 15 17 7 8 63 hdmapcl φ S 0 U Base LCDual K W
65 1 15 17 3 25 8 64 lcdvbaselfl φ S 0 U LFnl U
66 4 25 6 61 65 lkrssv φ Y S 0 U V
67 1 3 2 4 39 doch0 K HL W H O 0 U = V
68 8 67 syl φ O 0 U = V
69 66 68 sseqtrrd φ Y S 0 U O 0 U
70 14 60 69 pm2.61ne φ Y S X O X
71 70 34 eqssd φ Y S X = O X