Metamath Proof Explorer


Theorem hdmapellkr

Description: Membership in the kernel (as shown by hdmaplkr ) of the vector to dual map. Line 17 in Holland95 p. 14. (Contributed by NM, 16-Jun-2015)

Ref Expression
Hypotheses hdmapellkr.h H=LHypK
hdmapellkr.o O=ocHKW
hdmapellkr.u U=DVecHKW
hdmapellkr.v V=BaseU
hdmapellkr.r R=ScalarU
hdmapellkr.z 0˙=0R
hdmapellkr.s S=HDMapKW
hdmapellkr.k φKHLWH
hdmapellkr.x φXV
hdmapellkr.y φYV
Assertion hdmapellkr φSXY=0˙YOX

Proof

Step Hyp Ref Expression
1 hdmapellkr.h H=LHypK
2 hdmapellkr.o O=ocHKW
3 hdmapellkr.u U=DVecHKW
4 hdmapellkr.v V=BaseU
5 hdmapellkr.r R=ScalarU
6 hdmapellkr.z 0˙=0R
7 hdmapellkr.s S=HDMapKW
8 hdmapellkr.k φKHLWH
9 hdmapellkr.x φXV
10 hdmapellkr.y φYV
11 eqid LFnlU=LFnlU
12 eqid LKerU=LKerU
13 1 3 8 dvhlmod φULMod
14 eqid LCDualKW=LCDualKW
15 eqid BaseLCDualKW=BaseLCDualKW
16 1 3 4 14 15 7 8 9 hdmapcl φSXBaseLCDualKW
17 1 14 15 3 11 8 16 lcdvbaselfl φSXLFnlU
18 4 5 6 11 12 13 17 10 ellkr2 φYLKerUSXSXY=0˙
19 1 2 3 4 11 12 7 8 9 hdmaplkr φLKerUSX=OX
20 19 eleq2d φYLKerUSXYOX
21 18 20 bitr3d φSXY=0˙YOX